Electronic Supplementary Information (ESI)

for

Ultra-Small Carbon Nanospheres (< 50 nm) of Uniform Tunable Sizes by a Convenient Catalytic Emulsion Polymerization Strategy: Superior Supercapacitive and Sorption Performances

Vimal K. Tiwari,^a Zhe Chen,^a Fan Gao,^b Zhiyong Gu,^b Xueliang Sun,^c and Zhibin Ye^{a,*}

- ^{a.} Bharti School of Engineering, Laurentian University, Sudbury, Ontario P3E 2C6, Canada
- ^{b.} Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts
 01854, United States
- ^{c.} Department of Mechanical and Materials Engineering, Western University, London, Ontario
 N6A 5B9, Canada
- * Corresponding author; Email: zye@laurentian.ca

Figure S1. DLS particle size distribution of the polymer nanospheres (PNS11 and PNS21) obtained by the miniemulsion polymerization.

Figure S2. SEM images of PNS21 after hydrothermal treatment and CNS21. Scale bar = 100 nm. The PNS21 sample was gold-coated for SEM imaging.

Figure S3. XRD pattern of CNS21.

Figure S4. Micropore size distribution curves of A-CNS21 and AC-PDEB determined with NLDFT model.

Figure S5. XPS survey spectra (a) and elemental compositions (b) of A-CNS21 and AC-PDEB.

Figure S6. Raman spectra of PNS21 (after hydrothermal treatment), A-CNS21 and AC-PDEB.

Figure S7. GCD curves of A-CNS21 in a two-electrode cell configuration in $1.0 \text{ M H}_2\text{SO}_4$ at different current densities within (a) 0.1-1 A/g; (b) 10-50 A/g.

Figure S8. Electrochemical supercapacitive results of AC-PDEB in a two-electrode cell configuration in 1 M H_2SO_4 aqueous electrolyte: (a) CV curves at different voltage sweep rates; (b) GCD curves at different current densities within (b) 0.1–1 A/g, (c) 1–10 A/g, and (d) 10–100 A/g.

Table S1. Summary of supercapacitive performances of representative porous carbon electrodes in a two-electrode symmetrical cell configuration with aqueous electrolyte.

Sample			Reference data			Data from this work with A-CNS21	
		Current density range	Capacitance (F/g) at initial current density	Capacitance retention (%) at final current density	R ef.	Capacitance (F/g) at initial current density	Capacitance retention (%) at final current density
	Polystyrene-based hierarchical porous carbon spheres	5–50 mV/s	185 a	89 a	1	223	93.7
Porous carbon spheres	Mesoporous size controllable carbon microspheres	1–20 A/g	268 a	60.8 ^a	2	255	82.0
	Highly porous carbon spheres	5–100 mV/s	169	83	3	223	89.7
	Nitrogen-dopedcarbonmicrospheresfromorganicframeworks	0.2–20 A/g	282 ª	55 a	4	283 (@0.25 A/g)	74 (20 A/g)
	Mesoporous carbon nanospheres	10–200 mV/s	185	75	5	223	74.9
	Carbon spheres with microporous structure	5–50 mV/s	~182	70	6	223	93.7
	Hierarchcally porous carbon spheres by hydrothermal method	0.1–10 A/g	170	82	7	305	71.8
	Carbon microspheres	0.1–20 A/g	241	80	8	305	68.5
Hollow carbon	Ultrahigh-surface- area hollow carbon nanospheres	0.5–10 A/g 5–50 mV/s	~185 201	81.8 92.9	9	268 223	81.7 93.7
	Porous nitrogen-doped hollow carbon spheres	0.5–10 A/g	213 ^a	55.6 ^a	10	268	81.7
	Hierarchical porous carbon hollow spheres	0.5–10 A/g	270 ^a	72.8 ^a	11	268	81.7
spheres	Carbon nanocages (CNC700)	0.1–10 A/g	260	68.4	12	305	71.8
	Nitrogen-doped carbon nanocages	1-50 A/g	313	75	13	255	75.3
	Carbon nano-onions	0.75–25 A/g	126.3	71	14	268 (at 0.5 A/g)	75 (at 30 A/g)
Mesoporous carbons	Porous carbon with small mesopores	0.1–50 A/g	425	~66	15	305	63.0
Carbon aerogels	Magnetite carbon aerogels	5–100 mV/s 0.5–6 A/g	369.2 ^{<i>a</i>} 337.2 ^{<i>a</i>}	38.5 ^{<i>a</i>} 65.9 ^{<i>a</i>}	16	223 268 (at 0.5 A/g)	89.7 81.7 (at 10 A/g)

	Mesoporous carbon/graphene aerogels	0.5–10 A/g	197 ^a	71.6 ^a	17	268	81.7
Hierarchical ly porous carbons	Hierarchically porous carbons (CNB-3)	0.5–20 A/g	247 ^a	67.6 ^a	18	268	78.0
	3D microporous conducting carbon beehive	0.5–30 A/g	254	55	19	268	75.3
	Porous carbon from metal- organic framework	5–50 mV/s	204	77.9	20	223	93.7
	Nitrogen-doped ordered nanoporous carbons	0.1–10 A/g	~270	47	21	305	71.8
	Hierarchical carbide-derivde carbon foams	1–20 A/g	240	72.9	22	255	82.0
	Microporous carbon nanoplates	0.1–52.5 A/g	264	120	23	305	63.0 (at 50 A/g)
	Mesoporous graphene-like carbon sheet	5–200 mV/s	~255 a	~78 ª	24	233	78.0
	3D N-doped graphene-CNT networks	0.5–5 A/g	180	52.8	25	268	85.4
	Porous graphene carbons	1–20 A/g	280	~46	26	255	82.0
Graphene/ CNTs	2D porous carbon nanosheets	1–20 A/g	228	89	27	255	82.0
	Holey graphene frameworks	1–50 A/g	310	82	28	255	75
	Microporous carbon nanosheets	0.5–10 A/g	213 <i>a</i>	75.1 ^a	29	268	81.7
	Functionalized graphene hydrogel	1–20 A/g	441	80	30	255	82.0
	Graphene and CNT foam	5–100 mV/s	270	80	31	223	89.7
	Graphene-based frameworks	5–100 mV/s	175	47	32	223	89.7
	GO/MWCNT composites	5–100 mV/s	251 <i>a</i>	30 <i>a</i>	33	223	89.7
	GO reduced by urea	0.5–30 A/g	255 a	29 <i>a</i>	34	268	75.3
Carbons	Dead leaves derived carbons	0.5–10 A/g	401	64	35	268	81.7
from biomass	Carbonized chicken eggshell membranes with 3D architecture	0.2–20 A/g	297 ª	66 ª	36	283 (at 0.25 A/g)	73.9 (20 vs. 0.25 A/g)

^{*a*} Data obtained in a 3-electrode cell configuration, where the specific capacitance data are often significantly higher than the corresponding ones obtained in a 2-electrode symmetrical cell at the same current density (see Ref. 37).

Sample		To	oluene Methanol		hanol	
		Relative	Adsorption	Relative	Adsorption	Defense
		vapor	capacity	vapor	capacity	Reference
		pressure	(mg/g)	pressure	(mg/g)	
		0.01	159	0.01	21	
		0.05	585	0.05	167	
	A-CNS21	0.1	866	0.1	366	This work
		0.99	967	0.99	937	
		0.01	38	0.01	46	
		0.05	163	0.05	250	
	AC-PDEB	0.1	366	0.1	380	I his work
		0.99	631	0.99	572	
	Ultrahigh-surface-area hollow	0.1	~ 800	0.1	~ 240	9
	carbon nanospheres	0.9	1500	0.9	1230	
	(HCN-900-20H2R)					
	Single-walled carbon nanotubes	0.1	~160			38
	(CVD80)	0.94	456			
Porous		0.1	~130	0.1	~40	39
carbons	Activated grahene aerogel	1	710	1	641	
	Activated carbon	1	640			40
	Hierarchical porous carbon	0.9	243			41
	microfibers					
	Activated carbon fiber cloth	0.1	560 (20°C)			42
		0.9	600 (20°C)			
	Porous aromatic framework	0.1	~800			43
	(PAF-1)	1	1357			
	Porous aromatic framework	0.1	482	0.1	81	44
	(PAF-5)	1	1061	1	933	
	Porous aromatic framework	0.1	~300	0.1	~65	45
	(PAF-11)	1	780	1	654	
Porous	Porous polymeric nanoscale			0.1	~82	46
polymers	networks			0.9	741	
1 5	Mesoporous conjugated	0.1	~200			47
	polycarbazole (CPOP-9)	1	1355			
	Porous conjugated	0.1	~400	0.1	~160	48
	polyporphyrins (CPOP-12)	1	1192	1	766	
	Microporous polymeric	0.08	~360	0.08	~100	49
	microsphere	1	887	1	574	
		0.06	~608			50
MOF	HKUSI-I	0.9	620			
	MIL-101	0.08	~239			51
		0.9	1389			
	PdCl ₂ /MIL-101	0.06	660			51
		0.9	1285			
		0.1	510	0.08	25	52
	$[Zn_4O(bdc)(bpz)_2]$ •4DMF•6H ₂ O	0.9	~550	0.2	420	
				0.9	~480	
	$[Cu_2(bdc)_2(DMF)]$			0.1	~90	53
	• H_2O •(DMF)(C ₂ H ₅ OH) _{0.5}			0.9	171	

Table S2. Summary of adsorption capacities of representative porous materials toward toluene and methanol vapors at 25 °C.

Table S3. Summary of CO_2 adsorption capacity (at 0 °C and 1 bar) of most representative porous carbons.

	CO ₂ adso		
Sample	Adsorption capacity (wt%)	CO ₂ /N ₂ selectivity (mol/mol)	Reference
A-CNS21	26	11	This work
AC-PDEB	28	11	This work
Carbon microspheres	15.8		8
Monodisperse carbon spheres	19.2		54
Highly microporous carbon spheres	29		55
Activated carbon molecular sieves from petroleum pitch (VR-5-M)	38	2.8	56
Activated carbon molecular sieves from petroleum pitch (VR-93-M)	24	14	56
Phenolic resin-based activated carbon spheres (CS*-P-A)	39		57
Carbide derived carbon	31		58
Purified SWCNTs	22		59
Activated carbon	16		60
Activated carbon fibres	14		61
Activated carbon	12		62
Activated carbon	11		59
Nitrogen enriched porous carbon spheres	27		63

Table S4. Summary of H_2 adsorption capacity (at 77 K and 1 bar) of most representative porous carbons.

Sample	H ₂ adsorption capcity (wt%)	Reference
A-CNS21	2.5	This work
AC-PDEB	2.4	This work
Activated carbon	2.49	64
Biomass waste-derived microporous carbons	2.55	65
MOF-derived hierarchically porous carbons	3.25	66
Activated carbon (AC Norit 990293)	2.1	67
TiC carbide-derived carbon	3.0	68
Single-walled carbon nanotubes	0.924	69
Multi-walled carbon nanotubes	ca. 0.2	68
Superactivated carbide-derived carbons	2.7	70
MOF-derived nanoporous carbon (C1000)	2.77	71
Carbon hollow spheres	1.1–1.5	72

References

- 1. Xu, F.; Cai, R.; Zeng, Q.; Zou, C.; Wu, D.; Li, F.; Lu, X. Liang, Y.; Fu, R. Fast ion transport and high capacitance of polystyrene-based hierarchical porous carbon electrode material for supercapacitors. *J. Mater. Chem.* **2011**, *21*, 1970–1976.
- 2. Ma, X.; Gan, L.; Liu, M.; Tripathi, P. K.; Zhao, Y.; Xu, Z.; Zhu, D.; Chen, L. Mesoporous size controllable carbon microspheres and their electrochemical performances for supercapacitor electrodes. *J. Mater. Chem. A* **2014**, *2*, 8407–8415.
- 3. Zhang, C.; Hatzell, K. B.; Boota, M.; Dyatkin, B.; Beidaghi, M.; Long, D.; Qiao, W.; Kumbur, E. C.; Gogotsi, Y. Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes. *Carbon* **2014**, *77*, 155–164.
- 4. Han, J.; Xu, G.; Dou, H.; MacFarlane, D. R. Porous nitrogen-doped carbon microspheres derived from microporous polymeric organic frameworks for high performance electric double-layer capacitors. *Chem. Eur. J.* **2015**, *21*, 2310–2314.
- 5. Lei, Z.; Christov, N.; Zhang, L. L.; Zhao, X. S. Mesoporous carbon nanospheres with an excellent electrocapacitive performance. *J. Mater. Chem.* **2011**, *21*, 2274–2281.
- 6. Tanaka, S.; Nakao, H.; Mukai, T.; Katayama, Y.; Miyake, Y. An experimental investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using monodisperse carbon spheres with microporous structure. *J. Phys. Chem. C* 2012, *116*, 26791–26799.
- 7. Gong, Y.; Wei, Z.; Wang, J.; Zhang, P.; Li, H.; Wang, Y. Design and fabrication of hierarchically porous carbon with a template-free method. *Sci. Rep.* **2014**, *4*, 6349.
- 8. Wang, J.; Yao, L.; Ma, C.; Guo, X.; Qiao, W.; Ling, L.; Long, D. Organic amine-mediated synthesis of polymer and carbon microspheres: mechanism insight and energy-related applications. *ACS Appl. Mater. Interfaces* **2016**, *8*, 4851–4861.
- 9. Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. *Nature Commun.* **2014**, *6*, 7221.
- 10. Han, J.; Xu, G.; Ding, B.; Pan, J.; Dou, H.; MacFarlane, D. R. Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. *J. Mater. Chem. A* **2014**, *2*, 5352–5357.
- 11. Han, Y.; Dong, X.; Zhang, C.; Liu, S. Hierarchical porous carbon hollow-spheres as a high performance electrical double-layer capacitor material. *J. Power Sources* **2012**, *211*, 92–96.
- 12. Xie, K.; Qin, X.; Wang, X.; Wang, Y.; Tao, H.; Wu, Q.; Yang, L.; Hu, Z. Carbon nanocages as supercapacitor electrode materials. *Adv. Mater.* **2012**, *24*, 347–352.
- 13. Zhao, J.; Lai, H.; Lyu, Z.; Jiang, Y.; Xie, K.; Wang, X.; Wu, Q.; Yang, L.; Jin, Z.; Ma, Y.; Liu, J.; Hu, Z. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. *Adv. Mater.* **2015**, *27*, 3541–3545.
- Gao, Y.; Zhou, Y. S.; Qian, M.; He, X. N.; Redepenning, J.; Goodman, P.; Li, H. M.; Jiang, L.; Lu, Y. F. Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. *Carbon* 2013, 51, 52–58.
- Kang, D.; Liu, Q.; Gu, J.; Su, Y.; Zhang, W.; Zhang, D. "Egg-box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors. ACS Nano 2015, 9, 11225–11233.
- Wu, X.-L.; Wen, T.; Guo, H.-L.; Yang, S.; Wang, X.; Xu, A.-W. Biomass-derived spongelike carbonaceous hydrogels and aerogels for supercapacitors. *ACS Nano* 2013, *7*, 3589– 3597.

- 17. Liu, R.; Wan, L.; Liu, S.; Pan, L.; Wu, D.; Zhao, D. An interface-induced co-assembly approach towards ordered mesoporous carbon/graphene aerogel for high-performance supercapacitors. *Adv. Funct. Mater.* **2015**, *25*, 526–533.
- 18. Guo, D.-C.; Mi, J.; Hao, G.-P.; Dong, W.; Xiong, G.; Li, W.-C.; Lu, A.-H. Ionic liquid C₁₆mimBF₄ assisted synthesis of poly(benzoxazine-*co*-resol)-based hierarchically porous carbons with superior performance in supercapacitors. *Energy Environ. Sci.* **2013**, *6*, 652–659.
- 19. Puthusseri, D.; Aravindan, V.; Madhavi, S.; Ogale, S. 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. *Energy Environ. Sci.* **2014**, *7*, 728–735.
- 20. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. *J. Am. Chem. Soc.* **2008**, *130*, 5390–5391.
- Liang, Y.; Liu, H.; Li, Z.; Fu, R.; Wu, D. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors. *J. Mater. Chem. A* 2013, 1, 15207–15211.
- Oschatz, M.; Borchardt, L.; Pinkert, K.; Thieme, S.; Lohe, M. R.; Hoffmann, C.; Benusch, M.; Wisser, F. M.; Ziegler, C.; Giebeler, L.; Rümmeli, M. H.; Eckert, J.; Eychmüller, A.; Kaskel, S. Adv. Energy Mater. 2014, 4, 1300645.
- Yun, Y. S.; Cho, S. Y.; Shim, J.; Kim, B. H.; Chang, S.-J.; Baek, S. J.; Huh, Y. S.; Tak, Y.; Park, Y. W.; Park, S.; Jin, H.-J. Microporous carbon nanoplates from regenerated silica proteins for supercapacitors. *Adv. Mater.* 2013, 25, 1993–1998.
- 24. Zhang, P.; Qiao, Z.-A.; Zhang, Z.; Wan, S.; Dai, S. Mesoporous graphene-like carbon sheet: high-power supercapacitor and outstanding catalyst support. *J. Mater. Chem. A* **2014**, *2*, 12262–12269.
- 25. You, B.; Wang, L.; Yao, L.; Yang, J. Three dimensional N-doped graphene-CNT networks for supercapacitors. *Chem. Commun.* **2013**, *49*, 5016–5018.
- 26. Huang, J.; Wang, J.; Wang, C.; Zhang, H.; Lu, C.; Wang, J. Hierarchical porous graphene carbon-based supercapacitors. *Chem. Mater.* **2015**, *27*, 2107–2113.
- 27. Fan, X.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M.; Qiu, J. A layered-nanospaceconfinment strategy for the synthesis of two-dimensional porous carbon nanosheets for highrate performance supercapacitors. *Adv. Energy Mater.* **2015**, *5*, 1401761.
- 28. Xu, Y.; Lin, Z.; Zhong, X.; Huang, X.; Weiss, N. O.; Huang, Y.; Duan, X. Holey graphene frameworks for highly efficient capacitive energy storage. *Nature Commun.* **2014**, *5*, 4554.
- 29. Jin, Z.-Y.; Lu, A.-H.; Xu, Y.-Y.; Zhang, J.-T.; Li, W.-C. Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. *Adv. Mater.* **2014**, *26*, 3700–3705.
- 30. Xu, Y.; Lin, Z.; Huang, X.; Wang, Y.; Huang, Y.; Duan, X. Functionalized graphene hydrogel-based high-performance supercapacitors. *Adv. Mater.* **2013**, *25*, 5779–5784.
- Wang, W.; Guo, S.; Penchev, M.; Ruiz, I.; Bozhilov, K. N.; Yan, D.; Ozkan, M.; Ozkan, C. Z. Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. *Nano Energy* 2013, *2*, 294–303.
- 32. Wu, Z.-S.; Sun, Y.; Tan, Y.-Z.; Yang, S.; Feng, X.; Müllen, K. Three-dimensional graphenebased macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. **2012**, *134*, 19532–19535.

- 33. Aboutalebi, S. H.; Chidembo, A. T.; Salari, M.; Konstantinov, K.; Wexler, D.; Liu, H. K.; Dou, S. X. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors. *Energy Environ. Sci.* **2011**, *4*, 1855–1865.
- 34. Lei, Z.; Lu, L.; Zhao, X. S. The electrocapacitive properties of graphene oxide reduced by urea. *Energy Environ. Sci.* **2012**, *5*, 6391–6399.
- 35. Biswal, M.; Banerjee, A.; Deo, M.; Ogale, S. From dead leaves to high energy density supercapacitors. *Energy Environ. Sci.* 2013, *6*, 1249–1259.
- 36. Li, Z.; Zhang, L.; Amirkhiz, B. S.; Tan, X.; Xu, Z.; Wang, H.; Olsen, B. C.; Holt, C. M. B.; Mitlin, D. Carbonized chicken eggshell membranes with 3D architecture as high-performance electrode materials for supercapacitors. *Adv. Energy Mater.* **2012**, *2*, 431–437.
- 37. Stoller, M. D.; Ruoff, R. S. Best practice methods for determining an electrode material's performance for ultracapacitors. *Energy Environ. Sci.* **2010**, *3*, 1294–1301.
- 38. Agnihotri, S.; Rood, M. J.; Rostam-Abadi, M. Adsorption equilibrium of organic vapors on single-walled carbon nanotubes. *Carbon* **2005**, *43*, 2379–2388.
- 39. Sui, Z.-Y.; Meng, Q.-H.; Li, J.-T.; Zhu, J.-H.; Cui, Y.; Han, B.-H. High surface area porous carbons produced by steam activation of graphene aerogels. *J. Mater. Chem. A* **2014**, *2*, 9891–9898.
- 40. Lillo-Ródenas, M. A.; Cazorla-Amorós, D.; Linares-Solano, A. Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations. *Carbon* **2005**, *43*, 1758–1767.
- 41. Liang, Y.; Wu, D.; Fu, R. Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. *Sci. Rep.* **2013**, *3*, 1119.
- 42. Luo, L.; Ramirez, D.; Rood, M. J.; Grevillot, G.; Hay, K. J.; Thurston, D. L. Adsorption and electrothermal desorption of organic vapors using activated carbon adsorbents with novel morphologies. *Carbon* **2006**, *44*, 2715–2723.
- 43. Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. *Angew. Chem. Int. Ed.* **2009**, *48*, 9457–9460.
- Ren, H.; Ben, T.; Sun, F.; Guo, M.; Jing, X.; Ma, H.; Cai, K.; Qiu, S.; Zhu, G. Synthesis of a porous aromatic framework for adsorbing organic pollutants applications. *J. Mater. Chem.* 2011, *21*, 10348–10353.
- 45. Yuan, Y.; Sun, F.; Ren, H.; Jing, X.; Wang, W.; Ma, H.; Zhao, H.; Zhu, G. Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules. *J. Mater. Chem.* **2011**, *21*, 13498–13502.
- 46. Wu, D.; Nese, A.; Pietrasik, J.; Liang, Y.; He, H.; Kruk, M.; Huang, L.; Kowalewski, T.; Matyjaszewski, K. Preparation of polymeric nanoscale networks from cylindrical molecular bottlebrushes. *ACS Nano* **2012**, *6*, 6208–6214.
- 47. Chen, Q.; Liu, D.-P.; Zhu, J.-H.; Han, B.-H. Mesoporous conjugated polycarbazole with high porosity via structure tuning. *Macromolecules* **2014**, *47*, 5926–5931.
- 48. Feng, L.-J.; Chen, Q.; Zhu, J.-H.; Liu, D.-P.; Zhao, Y.-C.; Han, B.-H. Adsorption performance and catalytic activity of porous conjugated polyporphyrins via carbazole-based oxidative coupling polymerization. *Polym. Chem.* **2014**, *5*, 3081–3088.
- 49. Feng, L.-J.; Guo, J.-W.; Sun, Z.-Y. Spirobixanthene-based microporous polymeric microsphere for gas uptake and vapor adsorption. *Mater. Lett.* **2014**, *116*, 120–122.

- 50. Xu, F.; Xian, S.; Xia, Q.; Li, Y.; Li, Z. Effect of textural properties on the adsorption and desorption of toluene on the metal-organic frameworks HKUST-1 and MIL-101. *Adsorp. Sci. Tech.* **2013**, *31*, 325–339.
- 51. Qin, W.; Cao, W.; Liu, H.; Li, Z.; Li, Y. Metal-organic framework MIL-101 doped with palladium for toluene adsorption and hydrogen storage. *RSC Adv.* **2014**, *4*, 2414–2420.
- Hou, L.; Lin, Y.-Y.; Chen, X.-M. Porous metal-organic framework based on μ₄-oxo tetrazinc clusters: sorption and guest-dependent luminescent properties. *Inorg. Chem.* 2008, 47, 1346–1351.
- 53. Xue, D.-X.; Lin, Y.-Y.; Cheng, X.-N.; Chen, X.-M. A tetracarboxylate-bridged dicopper(II) paddle-wheel-based 2-D porous coordination polymer with gas sorption properties. *Cryst. Growth Des.* **2007**, *7*, 1332–1336.
- 54. Wang, S.; Li, W.-C.; Zhang, L.; Jin, Z.-Y.; Lu, A.-H. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO₂ adsorption properties. *J. Mater. Chem. A* **2014**, *2*, 4406–4412.
- 55. Ludwinowicz, J.; Jaroniec, M. Potassium salt-assisted synthesis of highly microporous carbon spheres for CO₂ adsorption. *Carbon* **2015**, *82*, 297–303.
- Wahby, A.; Ramos-Fernández, J. M.; Martínez-Escandell, M.; Sepúlveda-Escribano, A.; Silvestre-Albero, J.; Rodríguez-Reinoso, F. High-surface-area carbon molecular sieves for selective CO₂ adsorption. *ChemSusChem* 2010, *3*, 974–981.
- 57. Wickramaratne, N. P.; Jaroniec, M. Importance of small micropores in CO₂ capture by phenolic resin-based activated carbon spheres. *J. Mater. Chem. A* **2013**, *1*, 112–116.
- 58. Presser, V.; McDonough, J.; Yeon, S.-H.; Gogotsi, Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. *Energy Environ. Sci.* **2011**, *4*, 3059–3066.
- 59. Cinke, M.; Li, J.; Bauschlicher Jr., C. W.; Ricca, A.; Meyyappan, M. CO₂ adsorption in single-walled carbon nanotubes. *Chem. Phys. Lett.* **2003**, *376*, 761–766.
- 60. Sun, Y.; Wang, Y.; Zhang, Y.; Zhou, Y.; Zhou, L. CO₂ sorption in activated carbon in the presence of water. *Chem. Phys. Lett.* **2007**, *437*, 14–16.
- 61. López, M. C. B.; Martínez-Alonso, A.; Tascón, J. M. D. N₂ and CO₂ adsorption on activated carbon fibres prepared from Nomex chars. *Carbon* **2000**, *38*, 1177–1182.
- 62. Lozano-Castelló, Cazorla-Amorós, D.; Linares-Solano, A. Usefulness of CO₂ adsorption at 273 K for the characterization of porous carbons. *Carbon* **2004**, *42*, 1233–1242.
- 63. Wickramaratne, N. P.; Xu, J.; Wang, M.; Zhu, L.; Dai, L.; Jaroniec, M. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO₂ adsorption. *Chem. Mater.* **2014**, *26*, 2820–2828.
- 64. Wang, H.; Gao, Q.; Hu, J. High hydrogen storage capacity of porous carbons prepared by usig activated carbon. J. Am. Chem. Soc. 2009, 131, 7016–7022.
- 65. Cheng, F.; Liang, J.; Zhao, J.; Tao, Z.; Chen, J. Biomass waste-derived microporous carbons with controlled texture and enhanced hydrogen uptake. *Chem. Mater.* **2008**, *20*, 1889–1895.
- 66. Yang, S. J.; Kim, T.; Im, J. H.; Kim, Y. S.; Lee, K.; Jung, H.; Park, C. R. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity. *Chem. Mater.* **2012**, *24*, 464–470.
- Nijkamp, M. G.; Raaymakers, J. E. M. J.; van Dillen, A. J.; de Jong, K. P. Hydrogen storage using physisorption – materials demands. *Appl. Phys. A: Mater. Sci. Process.* 2001, 72, 619– 623.

- 68. Gogotsi, Y.; Dash, R. K.; Yushin, G.; Yildirim, T.; Laudisio, G.; Fischer, J. E. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. *J. Am. Chem. Soc.* **2005**, *127*, 16006–16007.
- 69. Ansón, A.; Callejas, M. A.; Benito, A. M.; Maser, W. K.; Izquierdo, M. T.; Rubio, B.; Jagiello, J.; Thommes, M.; Parra, J. B.; Martínez, M. T. Hydrogen adsorption studies on single wall carbon nanotubes. *Carbon* **2004**, *42*, 1243–1248.
- 70. Sevilla, M.; Roulston, R.; Mokaya, R. Superactivated carbide-derived carbons with high hydrogen storage capacity. *Energy Environ. Sci.* **2010**, *3*, 223–227.
- 71. Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake. *J. Am. Chem. Soc.* **2011**, *133*, 11854–11857.
- 72. Böttger-Hiller, F.; Kempe, P.; Cox, G.; Panchenko, A.; Janssen, N.; Petzold, A.; Thurn-Albrecht, T.; Borchardt, L.; Rose, M.; Kaskel, S.; Georgi, C.; Lang, H.; Spange, S. Twin polymerization at spherical hard templates: an approach to size-adjustable carbon hollow spheres with micro- or mesoporous shells. *Angew. Chem. Int. Ed.* **2013**, *52*, 6088–6091.