Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI[†])

Constructing Magnetic Si-C-Fe Hybrid Microspheres for Room Temperature Nitroarenes Reduction

Xiaofei Zhang,^a Lixin Chen,^a Jin Yun,^a Xiaodong Wang,^{b,*} and Jie Kong^{a,*}

^aMOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science, Northwestern Polytechnical University, Xi'an, 710072, P. R. China

^bSchool of Engineering, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

Corresponding author e-mail addresses:

kongjie@nwpu.edu.cn (J.K.) and x.wang@abdn.ac.uk (X.W.)

Fig. S1 (a) Powder XRD pattern and (b) Raman spectrum of the synthesized Si-C-Fe hybrid microspheres.

Fig. S2 UV-vis absorption spectra during reduction of 4-NP without catalysts.

Fig. S3 UV-vis absorption spectra during reduction of 4-NP with the pyrolyzed PDVB microspheres.

Fig. S4 UV-vis absorption spectra and linear relationship of $\ln(A_t/A_0)$ as a function of time during reduction of 4-NP using different amounts of Si-C-Fe hybrid microspheres. (a) and (b): 2 mg and (c) and (d): 8 mg, respectively.

Fig. S5 UV-vis absorption spectra during Si-C-Fe hybrid microspheres promoted reduction of 4-NP at 0 °C.

Fig. S6 UV-vis absorption spectra during the commercial metallic Fe powder promoted reduction of 4-NP.