Enhanced Li-S Battery Performance Based on Solution-Impregnation-Assisted Sulfur/Mesoporous Carbon Cathodes and a Carbon-Coated Separator

Changil Oh, Naeun Yoon, Jaeho Choi, Yeseul Choi, Seonghyeon Ahn, and Jung Kyoo Lee*

^aDepartment of Chemical Engineering, Dong-A University, Busan 49315, Republic of Korea

Supporting Information

Figure S1. XPS survey spectrum of MC1.

Figure S2. TGA profiles of (a) S/MC1s and (b) S/MC1-65-I (by impregnation only) and S/MC2-65-IM.

Figure S3. (a) SEM image of elemental sulfur powder, (b) photographs of elemental sulfur powder and sulfur dissolved in CS₂ at 5 wt% and 10 wt% at room temperature, and sulfur dissolved in toluene at 5 wt% and 10 wt% at 80 °C, (c) SEM image of S/MC1-65-PM and (d) EDS sulfur mapping of the image in (c), (e) SEM image of S/MC1-65-IM and (f) EDS sulfur mapping of image in (e).

Figure S4. Voltage profiles of (a) S/MC1-65-I, (b) S/MC1-60-IM, (c) S/MC1-75-IM, and (d) S/MC2-65-IM.

Figure S5. FE-TEM and sulfur mapping images of (a) S/MC1-65-IM and (b) S/MC1-65-PM showing the difference in internal sulfur dispersion on the samples. Dark-grey area in the FE-TEM image corresponds to the bright-yellow area of sulfur mapping image marked with dotted-white lines where local sulfur concentration is high, indicating that sulfur dispersion is much better in S/MC1-65-IM than in S/MC1-65-PM.

Figure S6. XRD patterns of S/MC1-65-I, MC1 and elemental sulfur.

Figure S7. Cycling performances (top) and Nyquist plots (bottom, after 1st cycle) of S/MC1-65-I and S/MC1-65-IM cells.

Approach	First discharge capacity	Current density ^{a)}	Sulfur loading		Sulfur Utilization	Cycle	Retention	Ref.
	mAh g ⁻¹	mA g ⁻¹	Wt. %	mg cm ⁻²	%	number	%	
S/MC1-60-IM	970 (0.1 C)	0.5 C	59.2	1.3	57.9 (44.5) ^b	300	88.4	This study
S/MC1-65-IM	1075 (0.1 C)	0.5 C	65.3	1.3	64.2 (43.0)	300	81.5	This study
S/MC1-65-IM (CCS)	1280 (0.1 C)	0.5 C	65.3	1.3	76.4 (55.2)	300	81.0	This study
S/MC1-65-IM (CCS)	1172 (0.1 C)	0.5 C	65.3	2.9	70.0 (55.4)	100	91.1	This study
Ordered mesoporous carbon	1070	1.0 C	70	n.a.	63.9	100	65.4	[1]
Ordered mesoporous carbon	1050	1.0 C	50	0.7~0.8	62.7	100	57.3	[2]
Meso-/micro-porous carbon	1037	0.5 C	60.6	1	61.9	200	80.7	[3]
Hollow carbon sphere	835	1.0 C	61	n.a.	49.9	500	75.4	[4]
Hollow carbon sphere	1040	0.5C	61	n.a.	62.1	100	89.8	[4]
Porous hollow carbon	1071	0.5 C	70	n.a.	63.9	100	90.9	[5]
Porous hollow carbon	920	0.5 C	70	2.0~2.5	54.9	100	89.4	[6]
Hierarchical Vine-Tree-Like Carbon Nanotube	844	1.0 C	60	1.0~1.5	50.4	450	62.8	[7]
Double-layer templated graphene	1084	1.0 C	64	0.8~1.1	64.7	200	73.8	[8]
Carbon coated separator	970	0.1 C	60	1.5~2.0	57.9	200	62.9	[9]
Carbon layer	1337	0.014 C	45	8.5	79.8	20	82.3	[10]
Carbon layer	1050	0.33 C	55	13.9	62.7	100	70.6	[11]

Table S1. Comparison of electrochemical performances of various approaches for S/C cathode system.

Note; $1.0 C = 1675 \text{ mA g}^{-1}$, a) Current density for the measurement of capacity retention, b) Sulfur utilization at 0.5 C.

References for Table S1.

- [1] J. Schuster, G. He, B. Mandlmeier, T. Yim, K. T. Lee, T. Bein, and L. F. Nazar, *Angew. Chem. Int. Ed.*, **2012**, *51*, 3591.
- [2] G. He, X. Ji, and L. F. Nazar, Energy Environ. Sci., 2011, 4, 2878.
- [3] Z. Li, Y. Jiang, L. Yuan, Z. Yi, C. Wu, Y. Liu, P. Strasser, and Y. Huang, ACS Nano, 2014, 8, 9295.
- [4] F. Xu, Z. Tang, S. Huang, L. Chen, Y. Liang, W. Mai, H. Zhong, R. Fu, and D. Wu, Nat. Commun., 2015, 6:7221 (doi: 10.1038/ncomms8221).
- [5] N. Jayaprakash, J. Shen, S. S. Moganty, A. Corona, and L. A. Archer, Angew. Chem. Int. Ed., 2011, 50, 5904.
- [6] G. He, S. Evers, X. Liang, M. Cuisinier, A. Garsuch, and L. F. Nazar, ACS Nano, 2013, 7, 10920.
- [7] M.-Q. Zhao, H.-J. Peng, G.-L. Tian, Q. Zhang, J.-Q. Huang, X.-B. Cheng, C. Tang, and F. Wei, Adv. Mater., 2014, 26, 7051.
- [8] M.-Q. Zhao, Q. Zhang, J.-Q. Huang, G.-L. Tian, J.-Q. Nie, H.-J. Peng, and F. Wei, *Nat. Commun.*, 2014, 5, 3410 (doi: 10.1038/ncomms4410).
- [9] H. B. Yao, K. Yan, W. Y. Li, G. Y. Li, G. Y. Zheng, D. S. Kong, Z. W. She, V. K. Narasimhan, Z. Liang and Y. Cui, *Energy Environ. Sci.*, **2014**, *7*, 3381.
- [10] S. S. Zhang, Electrochem. Commun., 2013, 31,10.
- [11] L. Qie, and A. Manthiram, ACS Energy Lett., 2016, 1, 46.