Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

# **Supplementary Materials**

#### A High Strength, Free-Standing Cathode Constructed by Regulating

## Graphitization and Pore Structure in Nitrogen-Doped Carbon Nanofibers for

### Flexible Lithium-Sulfur Battery

Xiong Song<sup>1</sup>, Suqing Wang<sup>\*,1,2</sup>, Yue Bao<sup>1</sup>, Guoxue Liu<sup>1</sup>, Wenping Sun<sup>\*,2</sup>, Liang-Xin Ding<sup>1</sup>, Hua Kun Liu<sup>2</sup> and Haihui Wang<sup>\*,1</sup>

<sup>1</sup>School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China

<sup>2</sup>Institute of Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW 2522, Australia

Corresponding author's contact information:

- \* Suqing Wang: E-mail: <u>cesqwang@scut.edu.cn</u>,
- \* Wenping Sun: E-mail: wenping@uow.edu.au
- \* Haihui Wang: E-mail: <u>hhwang@scut.edu.cn</u>



Fig. S1 SEM images of SiO<sub>2</sub>/G/NPCFs with SiO<sub>2</sub> concentration of 30 mg mL<sup>-1</sup>.



**Fig. S2** XRD diffraction pattern of S/G/NPCFs (inset: partial enlarge pattern of S/G/NPCFs).



Fig. S3 Elemental mapping of S/G/NPCFs.



**Fig. S4** Mechanical strength comparisons of this work with some other flexible S/C cathodes.



Fig. S5 a) Nitrogen adsorption-desorption isotherms of NCFs and b)  $SiO_2/G/NPCFs$  (insets are the corresponding pore size distribution curves).



Fig. S6 Mechanical properties of sulfur composite film without adding  $SiO_2$ . a) Photographs of S/NCFs composite film and b) S/G/NCFs composite film.



**Fig. S7** a) TG curves of S/NCFs (in nitrogen) and S/G/NCFs (in nitrogen); b) TG curves of SiO<sub>2</sub>/NPCFs (in air) and S/NPCFs (in nitrogen); c) TG curves of SiO<sub>2</sub>/G/NPCFs (in air) and S/G/NPCFs (in nitrogen).



Fig. S8 TEM images of a) SiO<sub>2</sub>/G/NPCFs, b) G/NPCFs;



Fig. S9 HRTEM of G/NPCFs (inset is the SAED pattern).



Fig. S10 TEM images of NPCFs.



Fig. S11 HRTEM image of NPCFs (inset is the SAED pattern).



**Fig. S12** Energy efficiency and Coulombic efficiency of S/G/NPCFs electrode at different current densities.



**Fig. S13** a) Rate capabilities of S/NPCFs and S/G/NPCFs electrode; b) Typical discharge-charge curves of S/NPCFs electrodes recorded at current rates of 0.1 C, 0.5 C, 1 C, 2 C, and 5 C.



**Fig. S14** The open-circuit voltage of a flexible battery using S/G/NCFs electrode as cathode at different bending angles.

|                         | Precursor               | Carbonization  | Etch     | Sulfurization |
|-------------------------|-------------------------|----------------|----------|---------------|
| With adding             | SiO <sub>2</sub> /GO/PA | SiO./C/NPCEs   |          | S/C/NPCFs     |
| GO and SiO <sub>2</sub> | Ν                       | 5102/0/111 CF5 | Unit Cry | 5/0/111 CF5   |
| With adding             |                         |                | NDCEs    | S/NDCEs       |
| SiO <sub>2</sub>        |                         |                | MICIS    | 5/INF CF 5    |
| Without adding          |                         |                | NCFs     | S/NCFs        |
| GO and SiO <sub>2</sub> |                         |                | ners     | SACTS         |
| Without adding          |                         |                |          | S/C/NCEs      |
| SiO <sub>2</sub>        |                         |                | Griters  | 5/0/11015     |

**Table S1.** The detail information of the as-prepared samples' abbreviations.

| Sample                    | BET surface<br>area(m <sup>2</sup> g <sup>-1</sup> ) | Total pore<br>volume(cm <sup>3</sup> g <sup>-1</sup> ) | Micropore<br>volume(cm <sup>3</sup> g <sup>-1</sup> ) |
|---------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|
| NCFs                      | 577                                                  | 0.277                                                  | 0.227                                                 |
| SiO <sub>2</sub> /G/NPCFs | 232                                                  | 0.371                                                  | 0.093                                                 |
| G/NPCFs                   | 429                                                  | 0.522                                                  | 0.173                                                 |
| S/G/NPCFs                 | 14                                                   | 0.095                                                  | 0.005                                                 |

Table S2. Textural parameters of NCFs, SiO<sub>2</sub>/G/NPCFs, G/NPCFs, S/G/NPCFs.

**Table S3.** Comparison of rate capabilities of representative S cathode materials in the literature.

| Matorial         | Sulfur             | Rate capability                          |  |
|------------------|--------------------|------------------------------------------|--|
| Material         | Loading            |                                          |  |
|                  |                    | 815 mAh g <sup>-1</sup> at 0.5 C         |  |
| S/C/NDCE         |                    | 735 mAh g <sup>-1</sup> at 1 C           |  |
| S/G/NPCFS        | 53 wt.% (flexible) | 670 mAh g <sup>-1</sup> at 2 C           |  |
| This work        |                    | 540 mAh g <sup>-1</sup> at 5 C           |  |
|                  |                    | $(1 \text{ C} = 1675 \text{ mA g}^{-1})$ |  |
|                  |                    | 1500 mAh g <sup>-1</sup> at ~0.03 C      |  |
| graphene/sultur  | 66.7 Wt%           | 750 mAh g <sup>-1</sup> at ~0.5 C        |  |
| Rej. SI          | (flexible)         | 500 mAh g <sup>-1</sup> at ~1 C          |  |
| CNF/sulfur       | 40 wt%             | 645 mAh g <sup>-1</sup> at ~0.06 C       |  |
| Ref. S2          | (N/A)              | 437 mAh g <sup>-1</sup> at ~0.6 C        |  |
| Cu-CNF/sulfur    | 52 wt%             | 590 mAh g <sup>-1</sup> at ~0.06 C       |  |
| Ref. S3          | (N/A)              | 419 mAh g <sup>-1</sup> at ~0.6 C        |  |
| Graphene/N-doped | ~55 wt%            | 800 mAh g <sup>-1</sup> at 1C            |  |
| Hollow Carbon    | (flexible)         | 600 mAh g <sup>-1</sup> at 2C            |  |

| Nanosphere/sulfur    |                           | 430 mAh g <sup>-1</sup> at 3C                                 |
|----------------------|---------------------------|---------------------------------------------------------------|
| Ref. S4              |                           |                                                               |
|                      |                           | 1045mAh g <sup>-1</sup> at 0.2 C                              |
| Polysulfides/CN1/AC  | 55 wt%                    | 955 mAh g <sup>-1</sup> at 0.5 C                              |
| NF@MnO2              | (flexible)                | 878 mAh g <sup>-1</sup> at 1 C                                |
| Kef. SS              |                           | 773 mAh g <sup>-1</sup> at 2 C                                |
|                      |                           | 1078 mAh g <sup>-1</sup> at 0.2 C                             |
| C/Dilanar Carlan     | < 40                      | 964 mAh g <sup>-1</sup> at 0.5 C                              |
| S/Bilayer Carbon     | < 40  Wt%                 | 890 mAh g <sup>-1</sup> at 1 C                                |
| <i>Kej.</i> S0       | (N/A)                     | 720 mAh g <sup>-1</sup> at 2 C                                |
|                      |                           | 685 mAh g <sup>-1</sup> at 3 C                                |
|                      |                           | 656 mAh g <sup>-1</sup> at 0.4 C                              |
| C/CNIT Network       | (0                        | 571 mAh g <sup>-1</sup> at 0.8 C                              |
| S/CNT INELWOIK       | 60 Wl%                    | 541 mAh g <sup>-1</sup> at 1 C                                |
| <i>Kej.</i> 57       | $(\mathbf{N}/\mathbf{A})$ | 503 mAh g <sup>-1</sup> at 2 C                                |
|                      |                           | 452 mAh g <sup>-1</sup> at 5 C                                |
| Aming functionalized | 70 x + 9/                 | ~950 mAh g <sup>-1</sup> at 0.5 C                             |
| Carbon Nanatuka      | /0 wt%<br>(56 wt% in the  | ~890 mAh g <sup>-1</sup> at 1 C                               |
|                      |                           | ~650 mAh g <sup>-1</sup> at 2 C                               |
| <i>Kej.</i> 58       | electrode)                | $\sim$ 300 mAh g <sup>-1</sup> at 4 C                         |
| S/ hierarchical      |                           |                                                               |
| Microporous-         | 50.5                      | 812  mAb  scl  st = 0.5  C                                    |
| mesoporous           | $50.5 \text{ W}^{10}$     | $613 \text{ mAn g}^2 \text{ at } \sim 0.5 \text{ C}$          |
| Carbonaceous         | (42.9 wt% in the          | $401 \text{ mAh } \text{g}^{-1} \text{ at } \sim 1 \text{ C}$ |
| Nanotubes            | electrode)                | 491 mAn g <sup>-1</sup> at ~2 C                               |
| Ref. S9              |                           |                                                               |

#### **References:**

- (S1) P. Kumar, F.-Y. Wu, L.-H. Hu, S.A. Abbsa, J. Ming, C.-N. Lin, J. Fang, C.-W. Chu, L.-J. Li, *Nanoscale*, 2015, 7, 8093-8100.
- (S2) L. Zeng, F. Pan, W. Li, Y. Jiang, X. Zhong, Y. Yu, Nanoscale, 2014, 6, 9579-9587.
- (S3) L. Zeng, Y. Jiang, J. Xu, M. Wang, W. Li, Y. Yu, Nanoscale, 2015, 7, 10940-10949.
- (S4) G.-M. Zhou, Y.-B. Zhao, A. Manthiram, *Adv. Energy Mater.*, 2015, **5**, 1402263-1402272.
- (S5) H.-H. Xu, L. Qie, A. Manthiram, Nano Energy, 2016, 26, 224-232.
- (S6) H.-S. Kang, Y.-K. Sun, Adv. Funct. Mater., 2016, 26, 1225-1232.
- (S7) L. Sun, D.-T. Wang, Y.-F. Luo, K. Wang, W.-B. Kong, Y. Wu, L.-N. Zhang, K.-L. Jiang, Q.-Q. Li, Y.-H. Zhang, J.-P. Wang, S.-S. Fan, ACS Nano, 2016, 10, 1300-1308.
- (S8) L. Ma, H.-L. Zhuang, S.-Y. Wei, K. E. Hendrickson, M. S. Kim, G. Cohn, R. G. Henning, L. A. Archer, ACS Nano, 2016, 10, 1050-1059.
- (S9) K. Mi, Y. Jiang, J.-K. Feng, Y.-T. Qian, S.-L. Xiong, Adv. Funct. Mater., 2016, 26, 1571-1579.