Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI) for

Highly Effective and Specific Way for Trace Analysis of Carbaryl Insecticides Based on Au₄₂Rh₅₈ Alloy Nanocrystals

Wei Chen,^{a,†} Yingying Liu,^{b,†} Yuan Zhang,^{a,*} Jianhui Fang,^b Pengcheng Xu,^c Jiaqiang Xu,^b Xinxin Li,^c Chung-Chiun Liu^d and Weijia Wen^{a,*}

Materials Genome Institute & School of Materials and Science Engineering, Shanghai University, Shanghai 200444, China. E-mail: zhangyuan@shu.edu.cn; phwen@ust.hk

- b. Department of Chemistry, Shanghai University, Shanghai 200444, China
- c. State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- d. Department of Chemical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA

Supplementary Materials

Fig. S1 Different CV measurements over $Au_{42}Rh_{58}$ nanocrystals. (a) Carbaryl (500 nM) in different concentration of KOH, (b) same concentration of carbaryl and 1-naphthol, (c) carbaryl (500 nM) in PBS solution (pH=7.2), (d) carbaryl (500 nM) and acetonitrile (0.038 M) in 0.2 M KOH.

Materials	Techniques	LODª	Anti- Interference Capability		
			Towards existing substances	Towards OP Pesticides	Ref.
Au NPs ^b	SERS ^c	1 ppm (~5 μM)	-	-	[1]
-	Visible spectrophotometric analysis	0.1 mg/kg (~0.5 μM)	-	-	[2]
MWCNT ^d based bi- enzyme	Electrochemical sensor	1 μΜ	-	×	[3]
RB ^e -Au NPs	Colorimetric and fluorometric assay	0.1 μg/L (~0.5 nM)	-	×	[4]
AChE- AuNPs/MPS ^f /Au	Electrochemical sensor	1 nM	Nitrophenol, AA ^g , UA ^h , metal ions, SO₄ ^{2−} and NO₃ [−]	-	[5]
-	HFF ⁱ QCM ^j immunosensor	0.14 μg/L (~0.7 nM)	-	×	[6]
Au ₄₂ Rh ₅₈ alloy nanocrystals	Electrochemical sensor	1 nM	Glucide, amino acids, and metal ions	v	This work

Table S1 Sensing performance for the detection of carbaryl in recent publications.

^a Limit of detection

^b Nanoparticles

^c Surface-enhanced Raman scattering

^d Multi-walled carbon nanotube

^e 3-Mercaptopropyl)-trimethoxysilane

^f Ascorbic acid

^g Uric acid

^h Rhodamine B

ⁱ High fundamental frequency

^j Quartz crystal microbalance

Reference

- 1 L. Wu, Z. J. Wang, B. Z. Shen, *Nanoscale*, 2013, 5, 5274.
- 2 S. Karnsa-arda, Y. Santaladchaiyakit, S. Srijaranai, S. Srijaranaia, *Curr. Anal. Chem.*, 2013, **9**, 150.

3 Y. Y. Zhang, M. A. Arugula, M. Wales, J. Wild, A. L. Simonian, Biosens. Bioelectron., 2015, 67, 287.

- 4 D. B. Liu, W. W. Chen, J. H. Wei, X. B. Li, Z. Wang, X. Y. Jiang, Anal. Chem., 2012, 84, 4185.
- 5 Y. H. Song, J. Y. Chen, M. Sun, C. C. Gong, Y. Shen, Y.G. Song, L. Wang, J. Hazard. Mater., 2016, 304, 103.
- 6 C. Marcha, J. V. Garcíab, Á. Sáncheza, A. Arnaub, Y. Jiménezb, P. Garcíab, J. J. Manclúsa, Á. Montoya, *Biosens. Bioelectron.*, 2015, 65, 1.