Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting information

High-surface-area plasmonic MoO_{3-x}: rational synthesis and enhanced ammonia borane dehydrogenation activity

Haibo Yin,^a Yasutaka Kuwahara,^{a,b} Kohsuke Mori,^{a,b,c} Hefeng Cheng,^a

Meicheng Wen^a and Hiromi Yamashita^{a,b,*}

^aGraduate School of Engineering, Osaka University, Osaka, 565-0871, Japan

^bUnit of Elements Strategy Initiative for Catalyst & Batteries (ESICB),

Kyoto University, Kyoto, 615-8245, Japan

^cJST, PRESTO, 4-1-8 HonCho, Kawaguchi, Saitama, 332-0012, Japan

*Corresponding Author: E-mail: yamashita@mat.eng.osaka-u.ac.jp

Figure S1. TG/DTA curves of MoO_{3-x} -200 °C (a) and F 127 (b) recorded in air.

Figure S2. (a) N₂ adsorption-desorption isotherms, (b) the corresponding BJH pore size distribution curves of as-synthesized MoO₃ and MoO_{3-x}-T samples hydrogen-treated at different temperatures and (c) N₂ adsorption-desorption isotherms of MoO_{3-x} nanosheets (Route 1).

Figure S3. The comparison of H₂ production activity from AB solution with or without NaHCO₃ (100 µmol) as positive charge scavenger, 2-propanol (100 µmol) as _OH scavenger, NaNO₃ (100 µmol) and Na₂S₂O₈ (100 µmol) as negative charge scavenger over plasmonic MoO_{3-x}-200 °C sample.