Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Dimensionally stable hexamethylenetetramine functionalized

polysulfone anion exchange membranes

Wanting Chen,^a Mengmeng Hu,^a Haochen Wang,^b Xuemei Wu,^a, * Xue Gong,^a Xiaoming Yan, ^{a, c} Dongxing Zhen,^a Gaohong He^{a, c,} *

 ^a State Key Laboratory of Fine Chemicals, Research and Development Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
^b State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China

^c School of Petroleum and Chemical Engineering, Dalian University of Technology, Panjin, 124221, China *E-mail: xuemeiw@dlut.edu.cn; hgaohong@dlut.edu.cn.

Table of Contents

Fig. S1. RDFs and CNs of different atoms in the dry PSF-ImOH membrane
Fig. S2. RDFs and CNs of different atoms in the dry PSF-QuOH membraneS3
Fig. S3. RDFs (solid lines) and CNs (dashed lines) of N ⁺ -N in the dry and hydrated (a) PSF-
QuOH and (b) PSF-ImOH membranes. (WU: water uptake)
Table S1. Coordination Numbers of different atoms
Fig. S4. TGA and DTG curves of the PSF-QuOH 1.67 membrane
Fig. S5. FTIR of the PSF-QuOH 1.94 membrane before and after 1 M KOH immersion at 60 °C
for 168h
Fig. S6. Alkaline stability of the PSF-QuOH 1.39 in 4 M NaOH at 80 °C
Fig. S7. ¹ H NMR spectra of BHMTA degradation in 1 M NaOH CD ₃ OD/D ₂ O (3:1)
Fig. S8. Chemical shift correlated spectroscopy (COSY) of BHMTA degradation products
S6

Fig. S1. RDFs and CNs of different atoms in the dry PSF-ImOH membrane.

Fig. S2. RDFs and CNs of different atoms in the dry PSF-QuOH membrane.

Fig. S3. RDFs (solid lines) and CNs (dashed lines) of N⁺-N in the dry and hydrated (a) PSF-QuOH and (b) PSF-ImOH membranes. (WU: water uptake)

AEMs	N ⁺ -O ₁		N ⁺ -O ₂		N ⁺ -O(S)		N-S		N ⁺ -N	
	r ^a (Å)	$CN(O_1)$	r ^a (Å)	CN(O ₂)	r ^a (Å)	CN(O(S))	r ^a (Å)	CN(S)	r ^a (Å)	CN(N)
PSF-ImOH	_b	0	_ b	0	4.9	0.8	7.1	0.8	9.0	2.7°
PSF-QuOH	_ b	0	_ b	0	5.0	0.5	7.9	2.0	9.6	9.1 ^d

Table S1 Coordination Numbers of different atoms.

^a Upper boundary for integration of the first shell.

^bThe first peaks of the RDFs (except for the first strong peaks (<4 Å)) are very weak. This indicates the atoms are uniform distribution in the AEMs and the corresponding CNs are close to zero.

^{c, d}CN(N)=CN(total)-CN(one repeat unit), CN(total) is the integration of the RDFs; CN(one repeat unit) is the numbers of N atoms around N^+ ion in one repeat unit, and equal to 1 for PSF-ImOH and 3 for PSF-QuOH, respectively.

Fig. S4. TGA and DTG curves of the PSF-QuOH 1.67 membrane.

Fig. S5. FTIR of the PSF-QuOH 1.94 membrane before and after 1 M KOH immersion at 60 °C for 168 h.

Fig. S6. Alkaline stability of the PSF-QuOH 1.39 after 4 M NaOH immersion at 80 °C for 264 h.

Fig. S7. ¹H NMR spectra of BHMTA degradation in 1 M NaOH CD₃OD/D₂O (3:1).

Fig. S8. Chemical shift correlated spectroscopy (COSY) of BHMTA degradation products