Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

A high-performance oxygen electrode for Li-O₂ batteries: Mo₂C nanoparticles grown on

carbon fibers

Yong Luo^a, Chao Jin^{a,b*}, Zhangjun Wang^a, Minghui Wei^a, Chenghao Yang^{b*},

Ruizhi Yang^a, Yu Chen^c, Meilin Liu^{b, c*}

^a Soochow Institute for Energy and Materials InnovationS, College of Physics,

Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and

Technology, Soochow University, Suzhou 215006, China

^b New Energy Research Institute, College of Environment and Energy, South China University of Technology, Guangzhou 510006, China

^c School of Materials Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245, USA

^{*} Corresponding author. *E-mail addresses*: jinchao@suda.edu.cn (C. Jin); esyangc@scut.edu.cn (C. Yang); meilin.liu@mse.gatech.edu (M. Liu)

Results and discussion:

Figure S1. TG profiles of pure CC and Mo₂C@CC electrodes measuredat a heating rate of 10 °C min⁻¹ under air flow, respectively.

TG analysis has been performed to measure the content of Mo₂C in Mo₂C@CC electrode. According to TG results and the following equation (S1), the average loading of Mo₂C in the CC wafer is calculated to be ~0.30 mg cm⁻².

 $Mo_2C + 4O_2 = 2MoO_3 + CO_2$ (S1)

Figure S2. SEM images of $Mo_2C@CC$ electrodes impregnated in different concentration $(NH_4)_6Mo_7O_{24}\cdot 4H_2O$ solution: 0.005 M (a), 0.015 M (b), 0.05 M (c).

Figure S3. SEM images of Mo₂C@CC electrodes after discharged to 2.2 V under different current density. a, 200 mA g^{-1} ; b, 500 mA g^{-1} ; and c, 1000 mA g^{-1} , respectively. All bar is 5.0 μ m

Figure S4. Discharge/charge specific capacity and corresponding coulombic efficiency at different current densities.

Figure S5. Cycling performances of CC (a and c) and $Mo_2C@CC$ (b and c) electrode based LOBs at a current density of 1000 mA g⁻¹ with a cut-off capacity of 1000 mAh g⁻¹, respectively.

$\xrightarrow{Rs} \xrightarrow{R_1} \xrightarrow{Rt} C$							
	R_s/Ω	R_1/Ω	CPE1/uF	n ₁	R_t / Ω	CPE2/uF	n ₂
2.98 V	22.90	5.72	1.20	0.994	73.70	27.2	0.867
2.55 V	26.30	9.14	18.70	0.885	163.00	52.90	0.856
$2.20~\mathrm{V}$	28.40	9.28	3.98	0.991	197.00	77.70	0.806
$4.00~\mathrm{V}$	29.60	5.89	2.60	0.955	125.00	91.60	0.799

Figure S6. Simplified equivalent circuit to simulate the Nyquist plots of $Mo_2C@CC$ based LOBs at different statuses as shown in Figure 4a (top) and the fitting results (buttom). The R_s , R_1 , R_{ct} and CPE represent solution resistance, interface resistance, charge transfer resistance and constant phase element, respectively.

Figure S7. XRD patterns of Mo₂C@CC with and without sealed by plastic film.

Figure S8. SEM images of CC electrode after discharged at 2.2 V (a) and charged at 4.0 V (b).

Figure S9. SAED patterns of pristine $Mo_2C@CC$ electrode (a), $Mo_2C@CC$ electrode after discharged at 2.2 V for 5 h (b), and $Mo_2C@CC$ electrode after recharged at 4.0 V for 5 h (c), respectively.