Supporting Information

Low Band-gap Conjugated Polymer based on Diketopyrrolopyrrole

Units and its Application in Organic Photovoltaic

Hao Zhang, Shaoqing Zhang, Ke Gao, Feng Liu*, Huifeng Yao, Bei Yang, Chang He, Thomas P. Russell, Jianhui Hou*

D/A	V_{oc} (V)	J_{sc} (mA/cm ²)	FF	PCE (%)
1:1	0.734	15.85	0.557	6.48
1:1.5	0.712	16.66	0.606	7.18
1:2	0.705	16.02	0.646	7.30
1:3	0.711	14.35	0.672	6.85

Table S1. The optimization of D/A weight ratio of the P266: PC₇₁BM-based PSCs^a

a) 3% vol. DPE was used as additive here because that the primary PCE acquired fromCB is too low. The results were acquired from the conventional method.

DPE (%)	Voc (V)	J_{sc} (mA/cm ²)	FF	PCE (%)
1	0.731	6.87	0.584	2.87
3	0.711	16.60	0.639	7.54
5	0.693	17.14	0.598	7.10

Table S2. The optimization of additive feed ratio of the P266: PC71BM-based PSCs^a

a) The D/A weight ratio adopted here is 1:2. The results were acquired from the conventional method.

Table S3. Photovoltaic Characteristics of P266/PC₇₁BM–based PSC Devices with different film thickness.

Film Thickness(nm)	V _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE (%)
340	0.69	21.08	0.519	7.60
305	0.69	21.32	0.562	8.28
270	0.69	20.25	0.599	8.42
250	0.69	19.65	0.612	8.35
230	0.69	19.24	0.630	8.41
210	0.70	18.10	0.657	8.32

180	0.70	17.58	0.669	8.20
160	0.71	17.63	0.699	8.72
130	0.71	17.54	0.701	8.76
100	0.72	17.30	0.716	8.92

Figure S1. The *J-V* curves of the P266:PC₇₁BM-based devices with various film thickness (nm)

Figure S2. The EQE curves of the P266:PC₇₁BM-based devices with various film thickness (nm)

Figu

re S3. *J-V* Characteristics of the hole-only devices used for SCLC fitting (both films thickness are 180nm)

Figure S4. *J-V* Characteristics of the hole-only devices of the samples prepared from sloution-mixing method (S-180nm and S-145 nm) and conventional method (C-180nm and C-130 nm).

Table S4. Hole mobilities calculated from devices with different film thic	kness
--	-------

Thickness	180nm	145nm	130nm
Solution-	1.52×10 ⁻³	1.28×10-3	
mixing Method	$cm^{2/}$ (V·s)	$cm^{2/}(V \cdot s)$	
Conventional	2.96×10 ⁻⁴		3.47×10 ⁻⁴
Method	$cm^{2}/(V \cdot s)$		$cm^{2}/(V \cdot s)$

Figure S5. The absorption spectra of the blend film prepared by two methods.