Supplementary Material (ESI) for Journal of Material Chemistry A

This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Hydrothermal preparation of nitrogen, boron co-doped curved graphene nanoribbons with high dopant amounts for highperformance lithium sulfur battery cathodes

Liang Chen ^a, Jianrui Feng ^b, Haihui Zhou^{*a}, Chaopeng Fu^{*a}, Guichang Wang ^b, Liming Yang ^a, Chenxi Xu ^a, Zhongxue Chen ^c, Wenji Yang ^a and Yafei Kuang^{*a}

^aState Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China ^bDepartment of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) and Synergetic Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, PR China

^cSchool of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China

Fig.S1 (a) Armchair and (b) zigzag model used for calculations, which adopt slab model to simulated edge of graphene. Fixed section was regarded as inner graphene sheet and relax section was used for investigating properties such as cohesive energy and binding energy of Li_2S_x

Fig.S2 TEM images of CGN (a), NCGN (b), BCGN (c) and NBCGN (d)

Fig.S3 XPS survey spectra of NCGN, BCGN and NBCGN

Fig.S4 EDS spectrum of the NBCGN/S composite

Fig.S5 (a) CV curves of the CGN/S, NCGN/S, BCGN/S and NBCGN/S cathodes at 0.1 mV/s at the first cycle; (b) CV curves of the NBCGN/S cathode at a scan rate of 0.1 mV/s at the first three cycles

Fig.S6 SEM images of CGN/S (a), NCGN/S (b), BCGN/S (c) and NBCGN/S (d) cathodes after 300 cycles at 0.2 C

Fig.S7 Visualized adsorption experiments for CGN, NCGN, BCGN and NBCGN in Li_2S_6 solution

Fig.S8 Equivalent circuit used for fitting the impedance data

Fig.S9 XPS survey spectra of NBCGN-1 and NBCGN-2

Fig.S10 High resolution N 1s spectra of NBCGN-1 and NBCGN-2

Fig.S11 High resolution B 1s spectra of NBCGN-1 and NBCGN-2

Sample	specific surface area/(m ² /g)	total pore volume/(cm ³ /g)
CGN	112.1	0.192
NCGN	147.1	0.215
BCGN	132.9	0.213
NBCGN	243.8	0.314

Table S1 BET specific surface area and pore volume of the CGN, NCGN, BCGN and

 NBCGN

Table S2 The specific N and B distributions in NCGN, BCGN and NBCGN. N-1 to N-5 represent pyridinic N, pyrolic N, graphitic N, oxygenated N and N-B, respectively; B-1 to B-5 stand for BC₃, BC₂O, BCO₂, B₂O₃ and B-N, respectively.

sample -	N distribution/at.%						B distribution/at.%			
	N-1	N-2	N-3	N-4	N-5	B-1	B-2	B-3	B-4	B-5
NCGN	19.1	20.6	17.9	42.4	_	_	_	_	_	_
BCGN	-	_	-	_	_	49.1	15.9	33.9	1.1	_
NBCGN	36.0	0.0	14.1	7.8	42.1	0.0	35.2	17.1	7.7	40.0

Samplas	Sulfur loading	Current Initial		Capacity loss	Reference	
Samples	mg/cm ²	density	capacity	rate per cycle		
NDCCN/C	2.0	0.20	077	0.000/	This	
NBCGN/S	~2.0	0.2 C	9//	0.08%	work	
N-CNTs/S	~0.55	0.2 C	~800	0.18%	S 1	
NG-S90	~1.5	~0.5C	1080	0.11%	S2	
S@NG	0.8	0.5 C	1030	0.10%	S3	
3D-NGS	~1.0	~0.15C	~1050	0.13%	S4	
Aligned	1.2	0.10	726	0.060/	95	
CNTs/S	~1.2	0.1C	/30	0.90%	33	
HMMCNTs/S	0.8-1.0	~0.3C	1008	0.26%	S6	
Gr/CNTs	~1.2	0.3C	946	0.26%	S7	
G-NBCL400/S	0.9-1.2	0.5C	829	0.08%	S8	
HCNF@NPC-S	1.8-2.5	0.5C	1170	0.27%	S9	
MPNC-S80	~1.1	~0.1C	1013	0.40%	S10	

 Table S3 Comparison of the sulfur cathode performance between this work and some

 other works reported previously

Sample	$R_{\rm s}$	CPE-T	CPE-P	R _{ct}	$R_{ m f}$	С
CGN/S	1.94	1.12E-5	0.86	58.04	13.62	0.0019
NCGN/S	2.11	2.12E-5	0.76	51.44	13.09	0.00078
BCGN/S	1.92	8.57E-6	0.87	46.67	13.01	0.00020
NBCGN/S	1.91	6.52E-6	0.86	38.47	7.758	0.00089

Table S4 Impedance values of the equivalent circuit fitted for the impedance spectra

Table S5 The specific N distributions in NBCGN-1 and NBCGN-2. N-1 to N-5 represent pyridinic N, pyrolic N, graphitic N, oxygenated N and N-B, respectively; respectively; B-1 to B-5 stand for BC₃, BC₂O, BCO₂, B₂O₃ and B-N, respectively.

ao m u1o	N distribution/at.%					B distribution/at.%				
sample	N-1	N-2	N-3	N-4	N-5	B-1	B-2	B-3	B-4	B-5
NBCGN-1	7.7	45.7	9.4	2.5	34.7	17.5	16.9	18.4	26.2	21.0
NBCGN-2	72.8	11.7	0.8	0	14.7	42.2	20.7	0.2	10.2	26.7

Systems	Formula to calculate E_{c}	$E_{\rm c}~({\rm eV})$
CC	$E_{\rm c,CC} = E_{\rm CC} - E_{\rm CC}$	0.00
BC	$E_{c,BC} = E_{BC} - E_{CC} + E(B) - E(C) - E(H)$	4.69
NC	$E_{c,NC} = E_{NC} - E_{CC} + E(N) - E(C) - E(H)$	2.60
BC+NC	$E_{\rm c,BC} + E_{\rm c,NC}$	7.29
BN	$E_{c,BN} = E_{BN} - E_{CC} + E(B) + E(N) - 2E(C) - 2E(H)$	6.16
CCC	$E_{c,CCC} = E_{CCC} - E_{CCC}$	0.00
BCC	$E_{c,BC} = E_{BC} - E_{CCC} + E(B) - E(C) - E(H)$	4.62
NCC	$E_{c,NCC} = E_{NCC} - E_{CCC} + E(N) - E(C) - E(H)$	2.79
BCC+NCC	$E_{\rm c,BCC} + E_{\rm c,NCC}$	7.41
BCN	$E_{c,BCN} = E_{BCN} - E_{CCC} + E(B) + E(N) - 2E(C) - 2E(H)$	7.34

Table S6 Calculated details of cohesive energy of each model. E_c , E_{XX} and E(X) stand for cohesive energy, energy of X system and energy of the X atom.

References

- S1. Y. Li, R. Mi, S. Li, X. Liu, W. Ren, H. Liu, J. Mei and W. M. Lau, *Int. J. Hydrogen Energy*, 2014, **39**, 16073-16080.
- S2. J. Song, Z. Yu, M. L. Gordin and D. Wang, Nano Lett., 2016, 16, 864-870.
- S3. Y. Qiu, W. Li, W. Zhao, G. Li, Y. Hou, M. Liu, L. Zhou, F. Ye, H. Li, Z. Wei, S. Yang, W. Duan, Y. Ye, J. Guo and Y. Zhang, *Nano Lett.*, 2014, **14**, 4821-4827.
- S4. C. Wang, K. Su, W. Wan, H. Guo, H. Zhou, J. Chen, X. Zhang, Y. Huang, J.

Mater. Chem. A, 2014, 2, 5018-5023.

S5. X. B. Cheng, J. Q. Huang, Q. Zhang, H. J. Peng, M. Q. Zhao, F. Wei, *Nano Energy*, 2014, **4**, 65-72.

S6. K. Mi, Y. Jiang, J. Feng, Y. Qian and S. Xiong, *Adv. Funct. Mater.*, 2016, 26, 1571-1579.

S7. S. Niu, W. Lv, C. Zhang, Y. Shi, J. Zhao, B. Li, Q.-H. Yang and F. Kang, J. *Power Sources*, 2015, **295**, 182-189.

S8. S. Yuan, J. L. Bao, L. Wang, Y. Xia, D. G. Truhlar and Y. Wang, *Adv. Energy Mater.*, 2016, **6**, 1501733.

S9. Q. Li, Z. Zhang, Z. Guo, Y. Lai, K. Zhang and J. Li, Carbon, 2014, 78, 1-9.

S10. J. Song, T. Xu, M. Gordin, P. Zhu, D. Lv, Y. Jiang, Y. Chen, Y. Duan, D. Wang, *Adv. Funct. Mater.*, 2014, 24, 1243-1250.