For a one-step reaction, the peak potential follows the following equation¹:

$$E_{P} = E^{O} - \frac{RT}{\alpha F} \left[0.780 + \ln\left(\frac{D_{O}^{\frac{1}{2}}}{k^{0}}\right) + \frac{1}{2}\ln(\nu) + \frac{1}{2}\ln\left(\frac{\alpha F}{RT}\right) \right]$$
(S1)

Where E_P is the peak potential, E^O is the standard potential, R is the ideal gas constant, F is Faraday's constant, α is the transfer coefficient, D_O is the diffusion coefficient, v is the scan rate, and k^o is the kinetic rate constant. Equation S1 can be simplified to:

$$E_P - E^O = -\frac{RT}{2\alpha F} \ln(\nu) + C$$
(S2)

Where C is a constant. Plots of E_P - E_O versus ln(v) were used to determine α .

For quasireversible reactions, the Nicholson method was used to determine the kinetic rate constants, which utilizes a dimensionless parameter defined as ²:

$$\psi = \frac{k^0 RT}{\left(\pi D_0 F v\right)^{\frac{1}{2}}} \tag{S3}$$

Assuming the diffusion coefficients of the oxidized and reduced species are equal. This was found to be the case for complex 5, and was already found to be true for complex 2.³

 $Mn(acac)_3$

VO(acac)₂

Randles-Sevcik Plots

Solubility Results

Table S1: Experimentally determined solubilities in acetonitr	ile.	
	Complex	Solubility [M]
	1	0.404 ± 0.002^{a}
	2	0.653±0.003ª
	3	0.60 ± 0.02
	4	0.88 ± 0.04
	5	0.40 ± 0.02
	6	$0.00212{\pm}0.00002^a$
	7	0.0547 ± 0.0003^{a}
	8	0.43±0.02ª
	9	1.92 ± 0.04^{a}
	10	$0.86{\pm}0.05^{a}$
	11	1.25±0.01ª
	12	1.13±0.01 ^a
	13	$1.80{\pm}0.04^{a}$
	14	$>1.8^{a}$
	15	1.32±0.04ª
	16	0.048 ± 0.002
	17	0.10 ± 0.01
^a Values obtained from previous study. ⁴		

Complex (Redox Couple)	Charging Potential [V vs. Ag/Ag ⁺]	Discharging Potential [V vs. Ag/Ag ⁺]	First Charge [e ⁻ /molecule]	Average Coulombic Efficiency	Cycle Life [Cycles to 80% Capacity]
1 (E ²)	-2.3	-1.7	1.00	4.6%	0
1 (E ³)	1.4	0.2	1.01	0.0%	0
$2 (E^1)^a$	-2.1	-1.4	0.97	98.0%	35
2 (E ²) ^a	0.5	0.0	1.00	71.2%	20
3 (E ²)	1.2	0.2	1.02	1.0%	0
4 (E ¹)	-1.4	-0.5	1.01	98.7%	97
5 (E ¹)	-1.5	-0.7	0.95	98.3%	43
5 (E ²)	0.8	0.3	0.90	4.9%	0
15 (E ¹)	-2.2	-1.6	0.95	97.0%	35
15 (E ²)	0.3	-0.1	0.90	48.8%	0
16 (E ²)	1.0	-0.5	1.00	95.3%	63
17 (E ¹)	0.4	-0.5	0.92	99.3%	100

 Table S2: Bulk electrolysis cycling parameters and quantified cycle lives. Solutions characterized using bulk electrolysis consisted of 0.01M active species with 0.5M TBABF4 in acetonitrile.

Cycle Life Correlation Plots (Reduction Couple)

Cycle Life Correlation Plots (Oxidation Couple)

Table S3: DFT calculated parameters for each redox reaction selected for bulk electrolysis characterization.

Complex (Redox Couple)	Average M-O Bond Length Change [Å]	Charge Stored on Metal [%]	LUMO/HOMO Density on Metal [%]
$1 (E^2)$	0.008	17	23
1 (E ³)	-0.033	21	21
2 (E ¹)	0.081	0	66
2 (E ²)	-0.079	19	57
3 (E ²)	-0.120	-14	34
4 (E ¹)	0.104	-42	75
5 (E ¹)	0.044	27	67
5 (E ²)	-0.041	15	53
15 (E ¹)	0.071	38	63
15 (E ²)	-0.073	2	55
16 (E ²)	-0.100	-2	77
17 (E ¹)		85	78

- 1 A. J. Bard and L. R. Faulkner, *Electrochemical Methods: Fundamentals and Applications*, John Wiley & Sons, Inc, New York, NY, 2nd edn., 2001.
- 2 R. S. Nicholson and I. Shain, *Anal. Chem.*, 1964, **36**, 706–723.
- J. A. Suttil, J. F. Kucharyson, I. L. Escalante-Garcia, P. J. Cabrera, B. R. James, P. R. F. Savinell, M. S. Sanford and L. Thompson, *J. Mater. Chem. A*, 2015, 3, 7929–7938.
- 4 J. F. Kucharyson, J. R. Gaudet, B. M. Wyvratt and L. T. Thompson, *J. Mater. Chem. A*, 2016, **Submitted**.