Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

for

Highly-Efficient and Durable Carbon Nanotube-based Anode Electrocatalyst for Water Electrolyzer

Tsuyohiko Fujigaya*, Yilei Shi, Jun Yang, Hua Li, Kohei Ito, Naotoshi Nakashima*

Table S1. Valence ratios of Ir determined from the XPS for MWNT/PBI/Ir, CB/PBI/Ir and CB/Ir and MWNT/PBI/IrO_x.

	lr(0)	lr(IV)
MWNT/PBI/Ir	86.4%	13.6%
CB/PBI/Ir	81.4%	18.6%
CB/Ir	88.4%	11.6%
MWNT/PBI/IrOx	65.5%	34.5%

Table S2. Comparison of half-cell performance of OER between the present- and reported catalysts.

Comple	Ir-based mass	activity (A g ⁻¹)	a*/mC ma-1)	Durability†	Pof
Sample	@1.48 V vs. RHE @1.51 V vs. RHE		<i>q</i> (mc mg -)	(hour)	Ref.
MWNT/PBI/IrOx	75	213	187	27	this
CB/PBI/IrOx	/PBI/IrOx 89 235		209	6	work
CB/IrOx	53	150	104	4	
ATO-supported IrNiO _x	—	92	—	20	S1
Ir nanodendrite supported on ATO	—	68	108	15	S2
Ir black	-	31	64	6	
Rutile IrO ₂ nanoparticle	3	-	-	_	S3
Ir-Ni bimetallic nanoparticles	-	490	-	12	S4

⁺The durability of all the catalysts were evaluated by chronopotentiometry measurements at 1.0 mA cm^{-2} .

Table S3. Comparison of single-cell performance of PEMWEs between the present- and previously reported cells.

Cathode	Pt loading in cathode (mg cm ⁻²)	Anode	Ir loading in anode (mg cm ⁻²)	Electrolyte	Cell voltage @1 A cm ⁻² (V)	Ir-based mass activity @1.6 V (A g ⁻¹)	Ref.
Pt/CB	0.5	MWNT/PBI/Ir	0.5	Nafion117	1.647	1533	this
Pt/CB	0.5	CB/PBI/Ir	0.5	Nafion117	1.779	992	work
Pt/CB	0.4	ATO-supported Ir nanodentrite	1.0	Nafion212	1.653	690	S2
Pt/CB	0.5	IrO ₂ (sulfite-complex rout)	2.5	Nafion115	1.710	227	S5
Pt/CB	0.5	IrO ₂ (colloid method)	3.0	Nafion112	1.615	296	S6
Pt/CB	0.2	IrO ₂ /SnO ₂	1.2	Nafion212	1.600	833	S7
Pt/CB	0.5	IrO ₂ (commercial)	3.0	Nafion212	1.564	452	S8

Table	S4.	List	of	sing	le ce	ell c	com	pone	nts.
-------	------------	------	----	------	-------	-------	-----	------	------

Components	Specification
Anode catalyst layer	
MWNT/PBI/Ir	Self-made; Ir loading: 0.5 mg cm ⁻²
• CB/PBI/Ir	Self-made; Ir loading: 0.5 mg cm ⁻² ; nafion content: 30 wt%
Electrolyte	Nafion117
Cathode catalyst layer	Pt/C; Pt loading: 0.5 mg/cm ⁻² ; nafion content: 30 wt%
Flow field plates	
Anode plate	Ti
Cathode plate	Carbon
Channel width×height×length	1 mm×1 mm×1 mm
Pattern	Serpentine with 1 mm ribs
Current collectors	
Anode	Ti sintered compact with Pt plating (Nikko Techno)
Cathode	SUS316L sintered compact (Nikko Techno)

Fig. S1 Elemental mapping of MWNT/PBI/Ir. (a) Dark field transmission electron microscope image of MWNT/PBI/Ir. (b) Energy dispersive X-ray spectrum of the catalyst. Elemental mapping of (c) C, (d) N and (e) Ir of the MWNT/PBI/Ir.

Fig. S2 X-ray diffraction of the catalysts before and after the growth of Ir nanoparticles. XRD patterns of (a) MWNT/PBI (black) and MWNT/PBI/Ir (red), (b) CB/PBI (black) and CB/PBI/Ir (red), and (c) CB (black) and CB/Ir (red).

Fig. S3 XPS survey scans of (a) MWNT/PBI/Ir, (b) CB/PBI/Ir and (c) CB/Ir. Asterisks indicate the signal from indium used as the substrate.

Fig. S4 Electrochemical oxidation of the composites. CV curves for oxidation of (a) CB/PBI/Ir and (b) CB/Ir by potential cycling from +0.05 V to +1.5 V (vs. RHE).

Fig. S5 Comparison of catalytic activity of the catalysts before and after the electrochemical oxidation. LSV curves of the (a) MWNT/PBI/Ir (red) and MWNT/PBI/IrO_x (blue), (b) CB/PBI/Ir (red) and CB/PBI/IrO_x (blue) and (c) CB/Ir (red) and CB/IrO_x (blue) for OER at the scan rate of 5 mV s⁻¹.

Fig. S6 CV curves of CB/PBI/Ir (a) and CB/Ir (b) at specified scan rates.

Fig. S7 LSV of the MWNT/PBI/IrO_x (red) and MWNT/IrO_x (black) for OER at the scan rate of 5 mV s⁻¹.

Fig. S8 Dark field STEM image of MWNT/Ir.

Fig. S9 SEM image of the free-standing anode film of MWNT/PBI/Ir.

Fig. S10 Electronic state of the Ir nanoparticles after the durability test. XPS spectra of MWNT/PBI/Ir after 100-h durability test at 0.3 A cm⁻² and 80 °C. Peak deconvolution between Ir(0) and Ir(IV) is shown as the dotted purple and orange, respectively. The ratio between Ir(0) and Ir(IV) was 57 : 43.

Fig. S11 Time course of the resistance of a PEMWE single cell using MWNT/PBI/Ir anode at 0.3 A cm⁻² and 80 $^{\circ}$ C.

Fig. S12 MEA characterization after the durability test. (a) Raman spectra and (b) I-V curves of MWNT/PBI/Ir at 80 °C before and after 100-h durability test operated at 0.3 Acm⁻².

References

- S1. Nong, H. N. *et al.* Oxide-Supported IrNiO_x Core–Shell Particles as Efficient, Cost-Effective, and Stable Catalysts for Electrochemical Water Splitting. *Angew. Chem. Int. Ed.* 54, 2975-2979 (2015).
- S2. Oh, H.-S., Nong, H. N., Reier, T., Gliech, M. & Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. *Chem. Sci.* 6, 3321-3328 (2015).
- S3. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO₂ and RuO₂ nanoparticles for oxygen evolution in acid and alkaline solutions. *J. Phys. Chem. Lett.* **3**, 399-404 (2012).
- S4. Lim, J. *et al.* Shaped Ir–Ni bimetallic nanoparticles for minimizing Ir utilization in oxygen evolution reaction. *Chem. Commun.* **52**, 5641-5644 (2016).
- S5. Siracusano, S. *et al.* Investigation of IrO₂ electrocatalysts prepared by a sulfitecouplex route for the O₂ evolution reaction in solid polymer electrolyte water electrolyzers. *Int. J. Hydrogen Energy* **36**, 7822-7831 (2011).
- S6. Song, S. *et al.* Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers. *Int. J. Hydrogen Energy* 33, 4955-4961 (2008).
- S7. Xu, J., Liu, G., Li, J. & Wang, X. The electrocatalytic properties of an IrO 2/SnO 2 catalyst using SnO 2 as a support and an assisting reagent for the oxygen evolution reaction. *Electrochimica Acta* 59, 105-112 (2012).
- S8. Su, H., Bladergroen, B. J., Linkov, V., Pasupathi, S. & Ji, S. Study of catalyst sprayed membrane under irradiation method to prepare high performance membrane

electrode assemblies for solid polymer electrolyte water electrolysis. *Int. J. Hydrogen Energy* **36**, 15081-15088 (2011).