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Table S1. Valence ratios of Ir determined from the XPS for MWNT/PBI/Ir, CB/PBI/Ir
and CB/Ir and MWNT/PBI/IrO,.

I ST TR

MWNT/PBI/Ir 86.4% 13.6%
CB/PBI/Ir 81.4% 18.6%
CB/Ir 88.4% 11.6%
MWNT/PBI/IrOx 65.5% 34.5%
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Table S2. Comparison of half-cell performance of OER between the present- and
reported catalysts.

Ir-based mass activity (A g?) Durab|||ty1' Ref.
@1.48V vs.RHE| @1.51V vs.RHE (hou
213

MWNT/PBI/IrOx 75

this
CB/PBI/IrOx 89 235 209 6 work
CB/1rOx 53 150 104 4
ATO-supported IrNiO, — 92 — 20 S1
Ir nanodendrite
— 1 1
supported on ATO 68 08 > S2
Ir black — 31 64 6
Rutile IrF)2 3 . . . 53
nanoparticle
Ir-Ni bimetallic _ 6 _ ” o

nanoparticles

tThe durability ofall the catalysts were evaluated by chronopotentiometry measurements at
1.0 mA cm2.

Table S3. Comparison of single-cell performance of PEMWESs between the present- and
previously reported cells.

Pt loading in Ir loading in anode Cell voltage I-based mass
Cathode 9 Anode 9 Electrolyte _Zg activity Ref.
cathode (mg cm? (mg cm2 @1 Acm2 (V) @1V (g

Pt/CB MWNT/PBV/Ir Nafion117 1.647 1533 this
Pt/CB 0.5 CB/PBU/Ir 0.5 Nafion117 1.779 992 work
PYCB 04 GO el St 1.0 Nafion212 1.653 690 s2
nanodentrite
Pt/CB 0.5 IrO, (sulfite-complex rout) 25 Nafion115 1.710 227 S5
Pt/CB 0.5 IrO, (colloid method) 3.0 Nafion112 1.615 296 S6
Pt/CB 0.2 Ir0,/SnO, 1.2 Nafion212 1.600 833 S1
Pt/CB 0.5 IrO, (commercial) 3.0 Nafion212 1.564 452 S8
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Table S4. List of single cell components.

S pecification

Anode catalyst layer

« MWNT/PBI/Ir Self-made; Ir loading: 0.5 mg cm2

+ CB/PBlIr Self-made; Ir loading: 0.5 mg cm; nafion content: 30 wt%
Electrolyte Nafion117
Cathode catalyst layer Pt/C; Pt loading: 0.5 mg/cm2; nafion content: 30 wt%
Flow field plates

* Anode plate Ti

» Cathode plate Carbon

» Channel widthxheightxlength 1 mmx1 mmx1 mm

» Pattern Serpentine with 1 mm ribs

Current collectors
* Anode Ti sintered compact with Pt plating (Nikko Techno)
+ Cathode SUS316L sintered compact (Nikko Techno)
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Fig. S1 Elemental mapping of MWNT/PBU/Ir. (a) Dark field transmission electron
microscope image of MWNT/PBU/Ir. (b) Energy dispersive X-ray spectrum of the
catalyst. Elemental mapping of (¢) C, (d) N and (e) Ir of the MWNT/PBU/Ir.
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Fig. S2 X-ray diffraction of the catalysts before and after the growth of Ir nanoparticles.
XRD patterns of (a) MWNT/PBI (black) and MWNT/PBU/Ir (red), (b) CB/PBI (black)
and CB/PBV/Ir (red), and (c) CB (black) and CB/Ir (red).
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Fig. S3 XPS survey scans of (a) MWNT/PBU/Ir, (b) CB/PBU/Ir and (c) CB/Ir. Asterisks
indicate the signal from indium used as the substrate.
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Fig. S4 Electrochemical oxidation of the composites. CV curves for oxidation of (a)
CB/PBU/Ir and (b) CB/Ir by potential cycling from +0.05 V to +1.5 V (vs. RHE).
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Fig. S5 Comparison of catalytic activity of the catalysts before and after the
electrochemical oxidation. LSV curves of the (a) MWNT/PBl/Ir (red) and
MWNT/PBI/IrO, (blue), (b) CB/PBI/Ir (red) and CB/PBI/IrO, (blue) and (c) CB/Ir (red)
and CB/IrO, (blue) for OER at the scan rate of 5 mV s-1.
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Fig. S6 CV curves of CB/PBI/Ir (a) and CB/Ir (b) at specified scan rates.
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Fig. S7 LSV of the MWNT/PBU/IrO, (red) and MWNT/IrO, (black) for OER at the scan
rate of 5 mV s-1.

Fig. S8 Dark field STEM image of MWNT/Ir.

Fig. S9 SEM image of the free-standing anode film of MWNT/PBUI/Ir.
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Fig. S10 Electronic state of the Ir nanoparticles after the durability test. XPS spectra of
MWNT/PBU/Ir after 100-h durability test at 0.3 A cm™ and 80 °C. Peak deconvolution
between Ir(0) and Ir(IV) is shown as the dotted purple and orange, respectively. The ratio

between Ir(0) and Ir(IV) was 57 : 43.
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Fig. S11 Time course of the resistance of a PEMWE single cell using MWNT/PBI/Ir
anode at 0.3 A cm™ and 80 °C.
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Fig. S12 MEA characterization after the durability test. (a) Raman spectra and (b) [-V
curves of MWNT/PBI/Ir at 80 °C before and after 100-h durability test operated at 0.3

Acm™.
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