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Table S1. Valence ratios of Ir determined from the XPS for MWNT/PBI/Ir, CB/PBI/Ir 

and CB/Ir and MWNT/PBI/IrOx.

 

Ir(0) Ir(IV)

MWNT/PBI/Ir 86.4% 13.6%

CB/PBI/Ir 81.4 % 18.6%

CB/Ir 88.4% 11.6%

MWNT/PBI/IrOx 65.5% 34.5%
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Table S2. Comparison of half-cell performance of OER between the present- and 
reported catalysts.

Sample
Ir-based mass activity (A g-1)

q* (mC mg-1) Durability†
(hour) Ref.

@1.48 V vs. RHE @1.51 V vs. RHE

MWNT/PBI/IrOx 75 213 187 27 this
workCB/PBI/IrOx 89 235 209 6

CB/IrOx 53 150 104 4

ATO-supported IrNiOx — 92 — 20 S1

Ir nanodendrite
supported on ATO — 68 108 15

S2
Ir black — 31 64 6

Rutile IrO2

nanoparticle 3 — — — S3

Ir-Ni bimetallic 
nanoparticles

— 490 — 12 S4

†The durability of all the catalysts were evaluated by chronopotentiometry measurements at 
1.0 mA cm-2.

Table S3. Comparison of single-cell performance of PEMWEs between the present- and 
previously reported cells.
 

Cathode Pt loading in 
cathode (mg cm-2) Anode Ir loading in anode 

(mg cm-2) Electrolyte Cell voltage 
@1 A cm-2 (V)

Ir-based mass 
activity 

@1.6 V (A g-1)
Ref.

Pt/CB 0.5 MWNT/PBI/Ir 0.5 Nafion117 1.647 1533 this 
workPt/CB 0.5 CB/PBI/Ir 0.5 Nafion117 1.779 992

Pt/CB 0.4 ATO-supported Ir
nanodentrite 1.0 Nafion212 1.653 690 S2

Pt/CB 0.5 IrO2 (sulfite-complex rout) 2.5 Nafion115 1.710 227 S5

Pt/CB 0.5 IrO2 (colloid method) 3.0 Nafion112 1.615 296 S6

Pt/CB 0.2 IrO2/SnO2 1.2 Nafion212 1.600 833 S7

Pt/CB 0.5 IrO2 (commercial) 3.0 Nafion212 1.564 452 S8
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Table S4. List of single cell components.

Components Specification

Anode catalyst layer

• MWNT/PBI/Ir Self-made; Ir loading: 0.5 mg cm-2

• CB/PBI/Ir Self-made; Ir loading: 0.5 mg cm-2; nafion content: 30 wt%

Electrolyte Nafion117

Cathode catalyst layer Pt/C; Pt loading: 0.5 mg/cm-2; nafion content: 30 wt%

Flow f ield plates

• Anode plate Ti

• Cathode plate Carbon

• Channel width×height×length 1 mm×1 mm×1 mm

• Pattern Serpentine with 1 mm ribs

Current collectors

• Anode Ti sintered compact with Pt plating (Nikko Techno)

• Cathode SUS316L sintered compact (Nikko Techno)
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Fig. S1 Elemental mapping of MWNT/PBI/Ir. (a) Dark field transmission electron 
microscope image of MWNT/PBI/Ir. (b) Energy dispersive X-ray spectrum of the 
catalyst. Elemental mapping of (c) C, (d) N and (e) Ir of the MWNT/PBI/Ir.
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Fig. S2 X-ray diffraction of the catalysts before and after the growth of Ir nanoparticles. 
XRD patterns of (a) MWNT/PBI (black) and MWNT/PBI/Ir (red), (b) CB/PBI (black) 
and CB/PBI/Ir (red), and (c) CB (black) and CB/Ir (red).

Fig. S3 XPS survey scans of (a) MWNT/PBI/Ir, (b) CB/PBI/Ir and (c) CB/Ir. Asterisks 
indicate the signal from indium used as the substrate.
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Fig. S4 Electrochemical oxidation of the composites. CV curves for oxidation of (a) 
CB/PBI/Ir and (b) CB/Ir by potential cycling from +0.05 V to +1.5 V (vs. RHE).
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Fig. S5 Comparison of catalytic activity of the catalysts before and after the 
electrochemical oxidation. LSV curves of the (a) MWNT/PBI/Ir (red) and 
MWNT/PBI/IrOx (blue), (b) CB/PBI/Ir (red) and CB/PBI/IrOx (blue) and (c) CB/Ir (red) 
and CB/IrOx (blue) for OER at the scan rate of 5 mV s -1.
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Fig. S6 CV curves of CB/PBI/Ir (a) and CB/Ir (b) at specified scan rates.
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Fig. S7 LSV of the MWNT/PBI/IrOx (red) and MWNT/IrOx (black) for OER at the scan 
rate of 5 mV s -1.

Fig. S8 Dark field STEM image of MWNT/Ir.

Fig. S9 SEM image of the free-standing anode film of MWNT/PBI/Ir.
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Fig. S10 Electronic state of the Ir nanoparticles after the durability test. XPS spectra of 
MWNT/PBI/Ir after 100-h durability test at 0.3 A cm-2 and 80 °C. Peak deconvolution 
between Ir(0) and Ir(IV) is shown as the dotted purple and orange, respectively. The ratio 
between Ir(0) and Ir(IV) was 57 : 43.
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Fig. S11 Time course of the resistance of a PEMWE single cell using MWNT/PBI/Ir 
anode at 0.3 A cm-2 and 80 °C.
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Fig. S12 MEA characterization after the durability test. (a) Raman spectra and (b) I-V 
curves of MWNT/PBI/Ir at 80 ºC before and after 100-h durability test operated at 0.3 
Acm-2.
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