Immobilization of Sulfur by Constructing Three-dimensional

Nitrogen-Rich Carbons for Long Life Lithium-Sulfur Batteries

Yingbin Tan, Zhihui Zheng, Shiting Huang, Yongzhe Wang, Zhonghui Cui, Jianjun Liu* and Xiangxin Guo*

State Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050,

China;

Phone and Fax: +86-21-5566 4581.

*E-mail: jliu@mail.sic.ac.cn, XXGuo@mail.sic.ac.cn

Fig. S1 Powder XRD patterns of the calcined products by using nickelocene, nickelocene (Cp_2Ni) and 2-methylimidazole ($C_5N_2H_5$), nickelocene and melamine ($C_3N_6H_6$).

Fig. S2 SEM images of the obtained Ni@NCNTs-CS by using different mass ratios between nickelocene and melamine: a) 1:2.5, b) 1:5 and c) 1:10. d) SEM images of the obtained NCNTs-CS at Ar-H₂ atomsphere using 1:10 ratios between nickelocene and melamine.

Fig. S3 Powder XRD patterns of as-prepared Ni@NCNTs-CS at N₂, Ar and Ar-H₂ atmosphere.

Fig. S4 Powder XRD patterns of the obtained Ni@NCNTs-CS by using different mass

ratios between nickelocene and melamine: 1:2.5, 1:5 and 1:10.

Fig. S5 SEM images of the obtained Ni@NCNTs-CS at N₂ atomsphere using 1:10 ratios between nickelocene and melamine.

Fig. S6 SEM images of the obtained Ni@NCNTs-CS at Ar atomsphere using 1:5 ratios

a) ZIF-8 coated NCNTs 200 nm

between nickelocene and melamine.

Fig. S7 TEM images of the obtained NCNTs-CS-ZIF-8 composite.

Fig. S8 SEM images of the obtained NCNTs-CS-ZIF-8 composite.

Fig. S9 Powder XRD patterns of as-prepared NCNTs-CS, ZIF-8, NCNTs-CS-ZIF-8

and NCNTs-CS-ZIF-8(C).

Fig. S10 XPS spectrum of a) NCNTs-CS and b) NCNTs-CS-ZIF-8(C).

Fig. S11 The bonding interface between Li_2S_n and nitrogen atom.

Fig. S12 Sealed vials of a lithium polysulfides solution (Li_2S_6 dissolved in DOL/DME solvents) containing NCNTs-CS and NCNTs-CS-ZIF-8(C) powder: (a) after 0 h, (b) after 0.5 h.

Fig. S13 SEM images of a) S/NCNTs-CS and b) S/NCNTs-CS-ZIF-8(C).

Fig. S14 TEM images of a) S/NCNTs-CS and b) S/NCNTs-CS-ZIF-8(C).

Fig. S16 CVs of a) S/NCNTs-CS and b) S/NCNTs-CS-ZIF-8(C) in the voltage range

of 1.5-2.8 V versus Li⁺/Li.

Fig. S17 The discharge-charge curves of the batteries with the S/NCNTs-CS and

S/NCNTs-CS-ZIF-8(C) cathodes at different C rates.

Fig. S18 The long-term cycling performance and Coulombic efficiencies of S/Graphene and S/NCNTs-CS-ZIF-8(C) with different nitrogen content at 1 C.

Table S1. The contents of carbon, nitrogen, oxygen in the resulting NCNTs-CS and NCNTs-CS-ZIF-8(C) via elemental analysis, and the content of nickel in the NCNTs-CS and NCNTs-CS-ZIF-8(C) by ICP measurement.

Samples	C (wt%)	N (wt%)	0	Ni	graphitic-N	pyrrolic-N	pyidinic-N
			(wt%)	(wt%)	(wt %)	(wt %)	(wt %)
NCNTs-CS	85.9	4.5	4.2	5.4	0.4	2.6	1.5
NCNTs-CS-	80.7	12.6	4.5	4.2	1.5	4.1	7.0
ZIF-8(C)							

It is inferred that these N-doped and O-doped sites in the carbon matrix can produce abundant active sites to promote the surface affinity for polysulfides and lithium sulfides.