Supporting Information of

Synthesis of Hard Carbons from Argan Shell for Na-Ion Batteries

Mouad Dahbi^{1,2}, Manami Kiso¹, Kei Kubota^{1,2}, Tatsuo Horiba¹, Tarik Chafik³, Kazuo Hida⁴, Takashi Matsuyama⁴ and Shinichi Komaba^{1,2*}

¹ Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan

² Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1–30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

³ Laboratory LGCVR (UAE/FSTL01), Faculty of Sciences and Techniques, University Abdelmalek Essaadi, Tangier, 90000, Morocco

⁴Nippon A&L Inc., Osaka 554-8558, Japan

*correspondence: komaba@rs.kagu.tus.ac.jp

Additional details of experimental condition

Synthesis of hard carbon from cellulose and lignin

We prepared hard carbon from cellulose and lignin by two different processes: standard and HCI-washing processes (**Figure S1a**). A standard process is as follows: the cellulose and lignin powders were heated in a horizontal tube furnace at a heating rate of 5 °C min⁻¹ and held at 800 °C for 1 hour under argon stream. The products are denoted herein after as Cellulose-800 and Lignin-800.

The HCI-treatment process is intended to compare with argan materials. Cellulose and lignin powders were treated with 2.0 mol dm⁻³ hydrochloric acid aqueous solution. For the treatment, the cellulose and lignin powders were dispersed into the hydrochloric acid and aged for 20 h at 60 °C. The powder was separated by filtration and washed with deionized water until pH 6.5-7.0 of filtrated water to remove remained HCI. The resultant powder was dried at 110 °C for 1 h under argon atmosphere. Following carbonization/pyrolysis conditions are the same as the process for argan shown in **Figure S1b**. In this process heating temperatures was 800 °C, and the hard carbons prepared at the temperatures are denoted as as Cellulose-800W and Lignin-800W.

Electrochemical tests of cellulose and lignin hard carbons

The cellulose and lignin hard carbons synthesized were mixed with sodium polyacrylate, PANa, (MW: 2,100,000 – 6,200,000, Kishida Chem., Co., Ltd.) at the weight ratio of 95:5 with deionized water. The resulting slurries were uniformly pasted onto aluminum foil, and then dried at 150 °C for 12 h in a vacuum. The mass loading of active materials was approximately 1.2-2.0 mg cm⁻². The electrochemical measurements were conducted by using 2032-type coin cells consisting of the hard carbon electrode, a separator (glass fiber filter, ADVANTEC), electrolyte solution (battery grade, Kishida Chemical Co., Ltd.), and sodium metal (Kanto Chemical, Co., Ltd.) as a counter electrode. The coin cells were assembled in a glove box filled with argon. The battery-grade electrolyte solution used in this study was 1 mol dm⁻³ of NaPF₆ ethylene carbonate (EC) : diethyl carbonate (DEC) (1:1 v/v), supplied by Kishida Chemical Corporation. Galvanostatic charge/discharge cycling tests were carried out in the voltage range between 0.0 and 2.0 V, using a battery cycler (TOSCAT-3100, Toyo System Co., Ltd.) at a current rate of 25 mA g⁻¹. All chemicals were handled in an argon-filled glove box to avoid air exposure and contamination from atmosphere.

Figure S1: Cellulose and lignin materials synthesis processes with and without HCI treatment at 800 °C.

Figure S2: Fitted Raman spectra profiles of a) Argan-800, b) Argan-1000, c) Argan-1200, and d) argan-1300. The fitting was done with Fityk 0.9.0 software program using Lorentzian function.

Figure S3: Electrode morphology observed by SEM of a) Argan -800, b) Argan-1000, c) Argan-1200, and d) Argan-1300.

Figure S4: N₂ adsorption–desorption isothermal curve of a) Argan-800, b) Argan-1000, c) Argan-1200, and d) Argan-1300. The insert is corresponding pore size distribution.

Figure S5: a) XRF spectra of untreated Argan-1000 (black curve), Argan-1200 (red curve) and Argan-1300 (blue curve). b) TGA analysis of untreated (black curve) and HCI washed (red curve) Argan raw materials before carbonization.

Figure S6: Fitted Raman spectra profiles of HCI washed argan materials a) Argan-800W, b) Argan-1000W, c) Argan-1200W, and d) Argan-1300W. The fitting was done with Fityk 0.9.0 software using Lorentzian function.

Figure S7: Electrode morphology observed by SEM of HCI-treated materials a) Argan-800W, b) Argan-1000W, c) Argan-1200W, and d) Argan-1300W.

Figure S8: N₂ adsorption–desorption isothermal curve of HCI-treated materials a) argan-800W, b) argan-1000W, c) argan-1200W, and d) argan-1300W. The insert is corresponding pore size distribution.

Figure S9: XRD (top) and SAXS (down) patterns of Cellulose-800, Lignin-800, Cellulose-800W, and Lignin-800W hard carbons.

Figure S10: Electrode morphology observed by SEM of carbonized cellulose and lignin materials at 800 °C: a) cellulose-800, b) cellulose-800W, c) lignin-800, and d) lignin-800W.

Figure S11: N₂ adsorption–desorption isothermal curve (top) and corresponding pore size distribution (down) of cellulose and lignin materials.

Table S1: Physical parameters for hard carbon samples synthesizedby pyrolysis of Argan shell, cellulose and lignin at 800 °C .

Sample	d ₀₀₂ / Å	L _c / nm	Radius of micro- pores by SAXS / Å	Surface area / m² g⁻¹	Average pore diameter by BET / nm	Total pore volume / cm ³ g ⁻¹
Argan-800	4.00	8.99	6.6	99	2.2	0.0540
Argan-800W	3.91	10.1	8.9	380	2.1	0.2000
Cellulose-800	4.09	9.3	6.3	425	1.66	0.1768
Cellulose-800W	4.05	4.05	7.1	352	2.3	0.2000
Lignin-800dry	3.91	8.8	14.6	4.4	4.7	0.0052
Lignin800W	4.04	9.02	8.9	287	2.3	0.1600

Figure S12: Charge/discharge curves of a) Argan-800, b) Argan-1000,
c) Argan-1200, and d) Argan-1300 electrodes with PANa binder cycled between 2.0 and 0.0 V at a rate of 25 mA g⁻¹ in 1.0 mol dm⁻³ NaPF₆ EC:DEC solution.

Figure S13: Charge/discharge profiles of Argan-1300W electrode pretreated by HCI without drying in vacuum at 110 °C, cycled between 2 and 0 V in PANa binder at a rate of 25 mA g⁻¹ in 1.0 mol dm⁻³ NaPF₆/EC/DEC.

Table S2: Electrochemical performances of hard carbon electrodes synthesized by pyrolysis of argan shell, cellulose and lignin at 800 $^{\rm O}C$.

Sample	1 st sodiation capacity / mAh g ⁻¹	1 st desodiation capacity / mAh g ⁻¹	1 st Coulombic efficiency / %
Argan-800	350	232	66.2
Argan-800W	372	286	76.9
Cellulose-800	357	197	55.2
Cellulose-800dry	344	267	77.6
Cellulose-800W	361	285	78.9
Lignin-800dry	247	158	64.0
Lignin800W	378	285	75.4

Figure S14: First charge/discharge profiles of a) Cellulose-800, Cellulose-800dry, and Cellulose-800W, b) Lingin-800, and Lignin-800W electrodes cycled between 2 and 0 V at a rate of 25 mA g⁻¹ in 1.0 mol dm⁻³ NaPF₆ EC:DEC.

Figure S15: Charge/discharge curves of a) Argan-800W, b) Argan-1000W, c) Argan-1200W, and d) Argan-1300W electrodes with PANa binder cycled between 2.0 and 0.0 V at a rate of 25 mA g⁻¹ in 1.0 mol dm⁻³ NaPF₆ EC:DEC solution.

Figure S16: Galvanostatic charge/discharge curves of Na/Na $_{2/3}$ Ni $_{1/3}$ Mn $_{2/3}$ O $_2$ in Na cell at 25 mA g⁻¹ in 1.0 mol dm⁻³ NaPF $_6$ /EC/DEC.