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Computational Methods

DFT computations were performed using the plane-wave technique implemented in Vienna ab
initio simulation package (VASP).! The ion-electron interaction was described using the
projector-augmented plane wave (PAW) approach.? The generalized gradient approximation
(GGA) expressed by PBE functional® and a 500 eV cutoff for the plane-wave basis set were
adopted for geometry optimizations. As PBE method systematically underestimates the band
gaps of semiconducting materials, we thus utilized the HSE06 hybrid functional* for the
computations of electronic and optical properties. The convergence threshold was set as 104 eV
in energy and 10 eV/A in force. We set the x and y directions parallel and the z direction
perpendicular to the layer plane, and adopted a supercell length of 15 A in the z direction. The
Brillouin zones was sampled with a 5x5x1 7" centered k points grid. To given an intuitive
demonstration of the optical properties, we also computed the imaginary part of the dielectric
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where the indices ¢ and v refer to the conduction and valence band states, respectively, and p s
the cell periodic part of the orbits at the k-point.

function (&,) of CTF-1 according to the following equation:?
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Supplemental Experimental results
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Figure S1| XRD of CTF-1. The low angle peak (~7°) could be interpreted as the in-plane
reflection (100) of the ideal 2D porous-honeycomb structure consist of benzene rings and
triazine, while the broad (001) diffraction peak at ~26° could be attributed to a vertical spacing
between stacked sheets of 3.4 A.
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Figure S2| Raman spectra of the CTF-1 at a laser excitation of 433 nm. The G band at 1607 cm™!
reveals the existence of extend m-conjugation and the D band at 1369 cm™! is attributed to the
structure disorder.

S2



Intensity (a.u.)

——A-CTFQD

300

350 400 450 500 550 600

Wavelength (nm)

Figure S3| The PL spectra of A-CTFQD excited at 290 nm.
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Figure S4| The normalized PL excitation (PLE) spectra of CTFQD-160 with varying detection

emission wavelengths (Age).
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Figure S5| The PL spectra of CTFQD-160 at different pH. (excited at 290 nm).

Figure S6] The TEM image of CTFQD-160 after hydrothermal treatment.
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Figure S7| The UV-Vis spectra of CTFQD-160 before and after hydrothermal treatment.
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Figure S8| The normalized PL spectra of CTFQD-160 before and after hydrothermal treatment

(excited at 290 nm).
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Figure S9| The Cls X-ray photoelectron spectroscopy (XPS) of CTFQD-160 before and after
hydrothermal treatment.
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