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Electronic Supplementary Information

Figure caption:
Fig. S1. (a) Digital images showing the as-obtained (left) and diluted (right) 
suspension of f-MoS2 in NMP. (b) Digital images showing the as-obtained (left) and 
diluted (right) suspension of f-MoS2 in DI water upon the solvent-exchange method.

Fig. S2. The direct sonication of b-MoS2 in water cannot produce exfoliated f-MoS2 
suspension.

Fig. S3. (a) Nitrogen sorption isotherms and (b) pore size distributions for Ni(OH)2 
and NiO. (c) Nitrogen sorption isotherms and (d) pore size distributions for MoS2-
NiO, MoS2-Ni(OH)2  and f-MoS2.

Fig. S4. (a) XRD patterns of b-MoS2 and f-MoS2. (b) XRD patterns of MoS2-Ni(OH)2, 
Ni(OH)2 and f-MoS2. 

Fig. S5. XPS spectra of (a) survey and (b) O 1s of the MoS2-NiO-2 sample. 

Fig. S6. SEM image of b-MoS2.

Fig. S7. TEM images of f-MoS2 at (a) low and (b) high magnifications, respectively.

Fig. S8. SEM images of (a, b) MoS2-NiO-1 and (c, d) MoS2-NiO-3 at low and high 
magnifications, respectively.

Fig. S9. SEM images of NiO at (a) low and (b) high magnifications, respectively.

Fig. S10. SEM image and the corresponding elemental mappings of MoS2-NiO-2 
sample.

Fig. S11. TEM images of MoS2-Co3O4 at different magnifications.

Fig. S12. SEM images of Co3O4 at (a) low and (b) high magnifications, respectively.

Fig. S13. (a) XRD patterns of MoS2-Co(OH)2, Co(OH)2 and f-MoS2. (b) XRD 
patterns of MoS2-Co3O4, Co3O4 and f-MoS2. 

Fig. S14. TEM image of MoS2-Fe2O3 at low magnification.

Fig. S15. SEM images of Fe2O3 at (a) low and (b) high magnifications, respectively.

Fig. S16. XRD patterns of MoS2-Fe2O3, Fe2O3 and f-MoS2 before (a) and after (b) 
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annealing. 

Fig. S17. Comparison of CV curves of graphite paper current collector and MoS2-
NiO-2 at a scan rate of 50 mV s-1.

Fig. S18. (a) CV curves of NiO at various scan rates, and (b) plot of the current 
densities of the cathodic peak for the MoS2-NiO-2 and NiO electrodes as functions of 
the square roots of the scan rates.

Fig. S19. CV curves of (a) MoS2-NiO-2, (b) f-MoS2, and (c) NiO electrodes in 
electrochemical double-layer region at scan rates of 5, 10, 20, 50, 75 and 100 mV s-1. 
(d) The ratio of the discharge current at 0.05 V with various scan rates of MoS2-NiO-2, 
f-MoS2, and NiO electrodes.

Fig. S20. Comparison of galvanostatic charge/discharge curves of MoS2-NiO, NiO 
and f-MoS2 at a current density of 0.5 A g-1. 

Fig. S21. Comparison of galvanostatic charge/discharge curves of MoS2-NiO-2 at 
various current densities. 

Fig. S22. Nyquist plots of MoS2-NiO, NiO and f-MoS2 electrodes in the frequency 
ranging from 1 MHz to 0.01 Hz (inset is the enlargement of the high-frequency 
region). 

Fig. S23. (a) Comparison of CV curves of MoS2-Co3O4, Co3O4 and f-MoS2 at 5 mV s-

1. (b) CV curves of MoS2-Co3O4 at different scan rates. (c) Specific capacitances of 
MoS2-Co3O4, Co3O4 and f-MoS2 at various current densities. (d) Cycling performance 
of MoS2-Co3O4 and Co3O4 at 2 A g-1.

Fig. S24. CV curves of (a) f-MoS2 and (b) Co3O4 at different scan rates, and the 
galvanostatic discharge curves of (c) f-MoS2, (d) Co3O4 and (e) MoS2-Co3O4 at 
different current densities. 

Fig. S25. CV curves of (a) f-MoS2, (b) Fe2O3 and (c) MoS2-Fe2O3 at different scan 
rates. Galvanostatic charge/discharge curves of (d) f-MoS2, (e) Fe2O3 and (f) MoS2-
Fe2O3 at different current densities. 

Fig. S26. (a) Comparison of CV curves of MoS2-Fe2O3, Fe2O3 and f-MoS2 at a scan 
rate of 5 mV s-1. (b) Specific capacitances of MoS2-Fe2O3, Fe2O3 and f-MoS2 at 
various current densities. (c) Cycling performance of MoS2-Fe2O3 and Fe2O3 at a 
current density of 2 A g-1. 
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Table S1. The BET surface areas and pore size distributions of Ni(OH)2 and MoS2-
Ni(OH)2.

Samples
SBET

[m2 g-1]

Total pore 

volume

[mL g-1]

Micropore volume

[mL g-1]

Mesopore volume

[mL g-1]

Ni(OH)2 39.9 0.10 ~ 0 0.10

MoS2-Ni(OH)2 45.6 0.14 ~ 0 0.14
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Table S2. Comparison of electrochemical capacitive performances of MoS2-NiO 
hybrids with NiO-based hybrids in other literatures.

Specific capacitance 

(F g-1)

Electrode materials

1 A g-1 20 A g-1

Ref.

NiO@PPy 595 401.2 [S1]

NiO nanotube arrays 523.4 230.1 [S2]

MoS2@Ni(OH)2 657 242.2 [S3]

MoS2@PANI 864.5 263.2 [S4]

NiO coated graphene/PANI 1260.2 521 [S5]

CNT arrays@NiO 1120.2 385.2 [S6]

CNT@NiO 1098.4 516.8 [S7]

MoS2-NiO-2 1080.6 668.4 This work
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Fig. S1. (a) Digital images showing the as-obtained (left) and diluted (right) 
suspension of f-MoS2 in NMP. All the two samples are left standing for 2 weeks 
before taking the photograph. (b) Digital images showing the as-obtained (left) and 
diluted (right) suspension of f-MoS2 in DI water upon the solvent-exchange method, 
which are left standing for 24 h before taking the photograph.
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Fig. S2. The direct sonication of b-MoS2 in water cannot produce exfoliated f-MoS2 
suspension.
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Fig. S3. (a) Nitrogen sorption isotherms and (b) pore size distributions for Ni(OH)2 
and NiO. (c) Nitrogen sorption isotherms and (d) pore size distributions for MoS2-
NiO, MoS2-Ni(OH)2  and f-MoS2.
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Fig. S4. (a) XRD patterns of b-MoS2 and f-MoS2. (b) XRD patterns of MoS2-Ni(OH)2, 
Ni(OH)2 and f-MoS2. For the intermediates of MoS2-Ni(OH)2 hybrids, Ni(OH)2 
shows XRD patterns centered at 2θ = 18.5, 31.3, 38.8, 51.5, 58.3, 62.1, 69.7 and 71.9o, 
which can be ascribed to the (002), (100), (101), (102), (110), (111), (103) and (112) 
planes, respectively, validating the formation of α-phase hexagonal structure of 
Ni(OH)2 (JCPDS card No.14-0117).
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Fig. S5. XPS spectra of (a) survey and (b) O 1s of the MoS2-NiO-2 sample. A binding 
energy peak at 529.0 eV corresponds to O atoms from NiO, while the peak located at 
530.5 eV can be ascribed to the absorbed Ox

- ions (O- and O2
- ions) in the oxygen-

deficient regions within the NiO. 
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Fig. S6. SEM image of b-MoS2.
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Fig. S7. TEM images of f-MoS2 at (a) low and (b) high magnifications, respectively.
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Fig. S8. SEM images of (a, b) MoS2-NiO-1 and (c, d) MoS2-NiO-3 at low and high 
magnifications, respectively.
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Fig. S9. SEM images of NiO at (a) low and (b) high magnifications, respectively.
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Fig. S10. SEM image and the corresponding elemental mappings of MoS2-NiO-2 
sample.
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Fig. S11. TEM images of MoS2-Co3O4 hybrid at different magnifications.
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Fig. S12. SEM images of Co3O4 at (a) low and (b) high magnifications, respectively, 
which show a nanowire morphology (50 ~ 70 nm in diameter; ~ 500 nm in length) 
with staggered distributions.
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Fig. S13. (a) XRD patterns of MoS2-Co(OH)2, Co(OH)2 and f-MoS2. (b) XRD 
patterns of MoS2-Co3O4, Co3O4 and f-MoS2. The diffraction peaks of the as-obtained 
products with sharp and slender peaks are well indexed into brucite β-Co(OH)2 

(JCPDS card No. 45-0031) for the intermediates and cubic Co3O4 (JCPDS card No. 
42-1467) for the final products, which imply their good crystallinity within the 
hybrids.
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Fig. S14. TEM image of MoS2-Fe2O3 at low magnification.
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Fig. S15. SEM images of Fe2O3 at (a) low and (b) high magnifications, respectively. 
Neat Fe2O3 shows a nanoparticle morphology with a uniform size.
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Fig. S16. XRD patterns of MoS2-Fe2O3, Fe2O3 and f-MoS2 before (a) and after (b) 
annealing. XRD patterns of MoS2-Fe2O3 hybrids before and after annealing are both 
indexed well with that of monoclinic Fe2O3 (JCPDS no. 33-0664). This might be due 
to the instability of the Fe(OH)3, which will be directly converted into Fe2O3 during 
the reaction process, but the post-annealing process makes the Fe2O3 in the hybrids 
with higher crystallinity. 
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Fig. S17. Comparison of CV curves of graphite paper current collector and MoS2-
NiO-2 at a scan rate of 50 mV s-1.
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Fig. S18. (a) CV curves of NiO at various scan rates, and (b) plot of the current 
densities of the cathodic peak for the MoS2-NiO-2 and NiO electrodes as functions of 
the square roots of the scan rates.
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Fig. S19. CV curves of (a) MoS2-NiO-2, (b) f-MoS2, and (c) NiO electrodes in 
electrochemical double-layer region at scan rates of 5, 10, 20, 50, 75 and 100 mV s-1. 

(d) The ratio of the discharge current at 0.05 V with various scan rates of MoS2-NiO-2, 
f-MoS2, and NiO electrodes.
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Fig. S20. Comparison of galvanostatic charge/discharge curves of MoS2-NiO, NiO 
and f-MoS2 at a current density of 0.5 A g-1. For the NiO and MoS2-NiO electrodes, 
two variation regions are observed in the charge/discharge curves, in which a linear 
variation of potential/time dependence (below ~ 0.37 V) indicates an entire double 
layer capacitive behavior from the charge separation at the electrode/electrolyte 
interface. By contrast, a potential plateau of potential vs. time (0.25 ~ 0.35 V) 
indicates a typical pseudocapacitive behavior, which is caused by a redox reaction at 
the electrode/electrolyte interface. Meanwhile, the ideal straight line for the f-MoS2 
electrode demonstrates a typical double layer capacitive behavior. 
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Fig. S21. Comparison of galvanostatic charge/discharge curves of MoS2-NiO-2 at 
various current densities. The potential plateau can be observed in all 
charge/discharge curves which are in good accordance with the data from the CV 
measurements. The specific capacitances are calculated by the following equation:

𝐶 =  
𝐼𝑡

𝑚𝑉
where I is the charge/discharge current, t is the discharge time, V is the voltage 

range, and m is the mass of the active materials in the electrode.
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Fig. S23. (a) Comparison of CV curves of MoS2-Co3O4, Co3O4 and f-MoS2 at 5 mV s-

1. (b) CV curves of MoS2-Co3O4 at different scan rates. (c) Specific capacitances of 
MoS2-Co3O4, Co3O4 and f-MoS2 at various current densities. (d) Cycling performance 
of MoS2-Co3O4 and Co3O4 at 2 A g-1.
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Fig. S24. CV curves of (a) f-MoS2 and (b) Co3O4 at different scan rates, and the 
galvanostatic discharge curves of (c) f-MoS2, (d) Co3O4 and (e) MoS2-Co3O4 at 
different current densities. 
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Fig. S25. CV curves of (a) f-MoS2, (b) Fe2O3 and (c) MoS2-Fe2O3 at different scan 
rates. Galvanostatic charge/discharge curves of (d) f-MoS2, (e) Fe2O3 and (f) MoS2-
Fe2O3 at different current densities. The MoS2-Fe2O3 hybrids show the largest loop 
area, indicating their superior electrochemical capacitive performance compared with 
neat f-MoS2 and Fe2O3. The f-MoS2 has a rectangular shape, while there is a pair of 
anodic and cathodic peaks at about -0.6 and -1.05 V, respectively, in the Fe2O3 and 
MoS2-Fe2O3 electrodes, which can be assigned to the redox process of reversible 
reaction between Fe2+ and Fe3+, respectively. The MoS2-Fe2O3 electrode presents a 
typical pseudocapacitive behavior with highly nonlinear charge/discharge curves. 
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Fig. S26. (a) Comparison of CV curves of MoS2-Fe2O3, Fe2O3 and f-MoS2 at a scan 
rate of 5 mV s-1. (b) Specific capacitances of MoS2-Fe2O3, Fe2O3 and f-MoS2 at 
various current densities. (c) Cycling performance of MoS2-Fe2O3 and Fe2O3 at a 
current density of 2 A g-1. The specific capacitances of MoS2-Fe2O3 electrodes are 
647.8 and 362.5 F g-1 at current densities of 1 and 20 A g-1, respectively, indicating an 
excellent rate performance exceeding neat Fe2O3 and f-MoS2. The cycling stabilities 
of Fe2O3 and MoS2-Fe2O3 electrodes are tested up to 6000 charge/discharge cycles. 
Neat Fe2O3 as electrode materials can hardly achieve a satisfying cycling stability, but 
a rational combination of f-MoS2 and Fe2O3 into unique hybrids reaches a 
significantly enhanced cycling stability. For MoS2-Fe2O3 hybrids, the capacitance 
retention of the MoS2-Fe2O3 electrode decreases gradually to ~ 96% after 6000 cycles, 
while neat Fe2O3 electrode displays a continuous decrease to ~ 54% after 6000 cycles.
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