Electronic Supplementary Information

CNT threading N-doped porous carbon film as binder-free electrode

for high-capacity supercapacitor and Li-S battery

Yazhi Liu,^{a‡} Goran Li,^{b‡} Zhongwei Chen,^b Xinsheng Peng*^a

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
^b Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
E-mail: pengxinsheng@zju.edu.cn
Tel.: + 86 571 87951958
Fax: + 86 571 87952625
‡These authors contribute equally to this work.

1. Equations for electrochemical calculation:

For supercapacitor, the specific capacitance, energy density and power density can be calculated according to the following equations:

$$Cg = It/(mV) \tag{1}$$

$$E = C_g V^2 / (2*4*3.6) \tag{2}$$

$$=E/t$$
(3)

where Cg (F g⁻¹) is the specific capacitance from galvanostatic charge-discharge (GCD) curves, I (A) is the current relating to the voltage V, V (V) is the voltage window, t (s) is the discharge time, m (g) is the mass of the active material, E (E, W h kg⁻¹) is the energy density and P (P, W kg⁻¹) is the power density.

P

For Li-S battery, the specific capacity is calculated from the charge-discharge curve, and the areal/volumetric capacity is calculated based on the active material ($1C=1675 \text{ mA g}^{-1}$).

2. Additional Figures and tables.

Figure S1. (a), (c) and (d) SEM of ZHN/CNT, CNCF-5/1 and CNCF-15/1, respectively; (b) XRD pattern of ZIF-8/CNT; (e) and (f) digital photograph of bended and released CNCF-10/1.

Fig S2. (a) Tensile strength–strain curves of HPCF4; (b) Ultimate stress, strain and electrical conductivity for HPCF1, 2, 3, 4 and 5.

Figure S3. (a) TEM and (b) mapping results of CNCF-10/1@Zn.

Figure S4. (a) Overview XPS spectra of CNCF-5/1, 10/1, 15/1 and CNCF-10/1@Zn; (b) comparison of Zn 2p spectra between CNCF-10/1@Zn and CNCF-10/1; (c) C 1s spectra of CNCF-10/1; (d) DFT pore-size distribution of CNCF-5/1, 10/1 and 15/1.

Figure S5. (a) The CV curve of CNCF-10/1 sample divided into EDLC and pseudocapacitance area at 100 mV s⁻¹; (b) the EDLCs and pseudocapacitances of all samples obtained from the CV curves at 100 mV s⁻¹; (c) the GCD curves of the CNCFs, CNT and ZNC at 2 A g⁻¹; (d) specific capacitances at different current densities; (e) the GCD curves of the CNCF-10/1 electrode with different thickness at 2 A g⁻¹; (f) EIS results of the CNCF-10/1 electrode with different thickness.

materials in aqueous electrolyte using three-electrode configuration.						
Material	Electrolyte	Current density	Cg/Fg^{-1}	Ref		
CNT/NPC	$0.5 \text{ M} \text{ H}_2 \text{SO}_4$	2.5 A g ⁻¹	286	1		
N-doped carbon/CNTs	1 M Na ₂ SO ₄	$1 \text{ M Na}_2 \text{SO}_4$ 1 A g^{-1}		2		
rGO/CMOF-5	6 M KOH	0.5 A g ⁻¹	312	3		
3D hybrid porous carbon	6 M KOH	0.5 A g ⁻¹	332	4		
N-Doped Porous Carbon	6 M KOH	0.5 A g ⁻¹	149	5		
Hollow carbon nanospheres	$1 \text{ M H}_2 \text{SO}_4$	20 mV s ⁻¹	91	6		
Hierarchically porous carbons	6 M KOH	1 mV s ⁻¹	170	7		
PC1000/C	6 M KOH	0.5 A g ⁻¹	225	8		
N-doped porous carbon	6 M KOH	0.1 A g ⁻¹	213.8	9		
N-doped porous carbon/CNT	$1 \text{ M H}_2 \text{SO}_4$	5 mV s ⁻¹	308	10		
CNCF-10/1	6 M KOH	$2 A g^{-1}$	340	This work		

Table S1. Comparisons of the NPCF-10/1 electrode with MOF derived porous carbon materials in aqueous electrolyte using three-electrode configuration.

		carbon film.		
$S_{BET}/m^2 g^{-1}$	Electrolyte	Current density	Cg/ F g ⁻¹	Ref
656	6 M KOH	0.2 A g ⁻¹	105	11
541	$1 \text{ M H}_2\text{SO}_4$	0.5 A g ⁻¹	165	12
	$1 \text{ M H}_2 \text{SO}_4$	0.2 A g ⁻¹	170	13
299.4	6 M KOH	0.5 A g ⁻¹	196	14
590	6 M KOH	0.5 A g ⁻¹	207	15
	$1 \text{ M H}_2\text{SO}_4$	0.4 A g ⁻¹	209	16
12.7	$1 \text{ M H}_2\text{SO}_4$	0.4 A g ⁻¹	221.7	17
	$0.5M H_2 SO_4$	50 mV s ⁻¹	223.8	18
113.5	1 M HCl	1 A g ⁻¹	251	19
584.5	3M KOH	0.3 A g ⁻¹	259	20
814.5	6 M KOH	1 A g ⁻¹	267.6	21
550	6 M KOH	10 A g ⁻¹	289	22
1223	6 M KOH	200 mV s ⁻¹	289	23
119	6 M KOH	5 mV s ⁻¹	80	24
691	6 M KOH	1 A g ⁻¹	152	25
812.5	6 M KOH	2 A g ⁻¹	175	26
1317	6 M KOH	20 A g ⁻¹	210	27
679	6 M KOH	0.5 A g ⁻¹	255	28
763	6 M KOH	1 A g ⁻¹	251	29
803	6 M KOH	1 mV s ⁻¹	223.8	30
645.2	6 M KOH	2A g ⁻¹	340	This work

Table S2. Comparison of electrochemical performance of flexible and/or self-standing

Figure S6. (a) The TGA curve of S@CNCF-10/1 electrode with a sulfur loading of 3 mg cm⁻² in N_2 with a heating rate of 5 °C min⁻¹, indicating sulfur content of ~70 wt%.

Figure S7. (a) SEM image of S@CNCF-10/1 electrode; (b) XRD pattern of CNCF-10/1 and S@ CNCF-10/1; (c) and (d) TEM image and mapping results of S@CNCF-10/1.

Figure S8. (a) cycling performance of S@CNT, S@ZNC and S@CNCF-10/1; (b) EIS spectra of the samples.

Sulfur	Sulfur	Pata/C Cuala number		Capacity	Ref	
loading/mg cm ⁻²	content/wt%	Kale/C	Cycle number	retention/mAh g-1	Kel.	
			100	959		
3	70	1	200	926	This	
	/0	I	600	807	work	
			1800	614		
	53	0.2	100	800	31	
	85	0.2	100	980	32	
2		0.2	300	670	33	
3.4	75	0.2	350	519	34	
1.2-1.4		0.3	200	1002	35	
	63	0.3	300	450	36	
1.2	64.5	0.3	300	629	37	
1.5	73	0.5	200	896	38	
2	67	0.5	300	700	39	
	65	0.5	300	740	40	
1.5	72	0.5	300	833	41	
2		0.5	300	844	42	
1.1		0.5	500	650	43	
1.6		0.5	1200	566	44	
	74	0.5	1800	230	45	
	76	1	100	800	46	
1	53.3	1	200	600	47	
	62	1	200	682	48	
0.68	68.1	1	200	786	49	
	70	1	400	706	50	
3.3		1	500	600	51	
	60	1	500	652	52	
1.5	64	1	600	438	53	
0.7	60	1	600	500	54	
	63	1.2	120	962	55	
1.2		2	200	461	56	
	54	2	250	621	57	
0.54		2	300	450	58	

 Table S3. Comparison of the S@ CNCF-10/1 electrode with representative high-performance nitrogen-doped carbon material.

The active material loading, current rate and specific capacities are calculated based on elemental sulfur (1C=1675 mA g^{-1})

Rate/C	Thickness/ μm	Areal sulfur loading/mg cm ⁻ 2	Sulfur content/ wt%	Volumetric sulfur loading/g cm ⁻³	Volumetric capacity/Ah cm ⁻³	Ref.
0.5	80	6.8	52	0.85	0.66	59
0.2	65	4.5	68	0.69	0.58	60
0.9	145	6.1	45	0.42	0.42	61
0.2	100	5.1	44	0.51	0.36	62
0.5	160	4.7	70	0.29	0.29	63
0.1	150	3.3	44	0.22	0.20	51
0.5	150	3	40	0.20	0.17	64
0.2	140	2.5	77	0.18	0.16	65
0.2	100	2.1	57	0.21	0.23	66
0.2	79	6.9	71	0.88	0.84	This
	/ð					work

Table S4. Comparison of volumetric capacity and sulfur weight content of the S@ CNCF-10/1 with previously reported self-standing sulfur electrode with high sulfur-loading.

The volumetric capacity is valued by the 50th cycle. The active material loading, current rate and specific capacities are calculated based on elemental sulfur ($1C=1675 \text{ mA g}^{-1}$)

References

- 1. J. Kim, C. Young, J. Lee, M. S. Park, M. Shahabuddin, Y. Yamauchi and J. H. Kim, *Chem. Commun.*, 2016, **52**, 13016-13019.
- Y. Zhang, B. Lin, J. Wang, J. Tian, Y. Sun, X. Zhang and H. Yang, J. Mater. Chem. A, 2016, 4, 10282-10293.
- 3. P. Wen, Z. Li, P. Gong, J. Sun, J. Wang and S. Yang, *RSC Advance*, 2016, **6**, 13264-13271.
- 4. W. Bao, A. K. Mondal, J. Xu, C. Wang, D. Su and G. Wang, *J. Power Sources*, 2016, **325**, 286-291.
- 5. Z. X. Li, K. Y. Zou, X. Zhang, T. Han and Y. Yang, *Inorg. Chem.*, 2016, **55**, 6552-6562.
- M. Klose, R. Reinhold, K. Pinkert, M. Uhlemann, F. Wolke, J. Balach, T. Jaumann, U. Stoeck, J. Eckert and L. Giebeler, *Carbon*, 2016, **106**, 306-313.
- 7. Y. Yang, S. Hao, H. Zhao, Y. Wang and X. Zhang, *Electrochim. Acta*, 2015, **180**, 651-657.
- 8. M. Jiang, X. Cao, D. Zhu, Y. Duan and J. Zhang, *Electrochim. Acta*, 2016, **196**, 699-707.
- 9. S. Zhong, C. Zhan and D. Cao, *Carbon*, 2015, **85**, 51-59.
- 10. X. Xu, M. Wang, Y. Liu, Y. Li, T. Lu and L. Pan, *Energy Storage Material*. 2016, **5**, 132-138.
- 11. K. Huang, Y. Yao, X. Yang, Z. Chen and M. Li, *Mater. Chem. Phys.*, 2016, **169**, 1-5.
- 12. Y. Cheng, L. Huang, X. Xiao, B. Yao, L. Yuan, T. Li, Z. Hu, B. Wang, J. Wan and J. Zhou, *Nano Energy*, 2015, **15**, 66-74.
- 13. C. Yang and D. Li, *Mater. Lett.*, 2015, **155**, 78-81.
- 14. S. He, H. Hou and W. Chen, J. Power Sources, 2015, 280, 678-686.
- 15. Z. Lei, L. Lu and X. S. Zhao, *Energy Environ. Sci.*, 2012, **5**, 6391-6399.
- M. Moussa, Z. Zhao, M. F. El-Kady, H. Liu, A. Michelmore, N. Kawashima, P. Majewski and J. Ma, J. Mater. Chem. A, 2015, 8, 15668-15674.
- 17. Q. Wu, Y. Xu, Z. Yao, A. Liu and G. Shi, ACS Nano, 2010, 4, 1963-1970.

- 18. H. R. Byon, S. W. Lee, S. Chen, P. T. Hammond and Y. Shao-Horn, *Carbon*, 2011, **49**, 457-467.
- 19. Q. Yang, S. K. Pang and K. C. Yung, *J. Power Sources*, 2016, **311**, 144-152.
- Y. Liu, Z. Shi, Y. Gao, W. An, Z. Cao and J. Liu, ACS Appl. Mater. interfaces, 2016, DOI: 10.1021/acsami.5b11558.
- 21. K. Lee, H. Song, K. H. Lee, S. H. Choi, J. H. Jang, K. Char and J. G. Son, *ACS Appl. Mater. interfaces*, 2016, **8**, 22516-22525.
- 22. S. Biswas and L. T. Drzal, ACS Appl. Mater. interfaces, 2010, 2, 2293-2300.
- 23. G. Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang and F. Wei, *Nano Research*, 2011, **4**, 870-881.
- 24. R. Liu, L. Pan, J. Jiang, X. Xi, X. Liu and D. Wu, Sci. Rep., 2016, 6, 21750.
- 25. M. Guo, J. Guo, D. Jia, H. Zhao, Z. Sun, X. Song and Y. Li, *J. Mater. Chem. A*, 2015, **3**, 21178-21184.
- 26. Shilpa and A. Sharm, *RSC Advance*, 2016, **6**, 78528-78537.
- 27. C. Ma, Y. Li, J. Shi, Y. Song and L. Liu, Chem. Eng. J., 2014, 249, 216-225.
- 28. L. Zhang, Y. Jiang, L. Wang, C. Zhang and S. Liu, *Electrochim. Acta*, 2016, **196**, 189-196.
- 29. Y. Bai, X. Yang, Y. He, J. Zhang, L. Kang, H. Xu, F. Shi, Z. Lei and Z. H. Liu, *Electrochim. Acta*, 2016, **187**, 543-551.
- 30. H. Li, D. Yuan, C. Tang, S. Wang, J. Sun, Z. Li, T. Tang, F. Wang, H. Gong and C. He, *Carbon*, 2016, **100**, 151-157.
- 31. Y. Chen, S. Lu, X. Wu and J. Liu, J. Phys. Chem. C, 2015, 119, 10288-10294.
- 32. W. Zhou, C. Wang, Q. Zhang, H. D. Abruña, Y. He, J. Wang, S. X. Mao and X. Xiao, *Adv. Energy Mater.*, 2015, **5**, 1401752.
- 33. C. Reitz, B. Breitung, A. Schneider, D. Wang, M. von der Lehr, T. Leichtweiss, J. Janek, H. Hahn and T. Brezesinski, *ACS applied materials & interfaces*, 2016, **8**, 10274-10282.
- 34. B. P. Vinayan, T. Diemant, X. M. Lin, M. A. Cambaz, U. Golla-Schindler, U. Kaiser, R. Jürgen Behm and M. Fichtner, *Adv. Mater. Interfaces*, 2016, **3**, 1600372.
- 35. S. Niu, G. Zhou, W. Lv, H. Shi, C. Luo, Y. He, B. Li, Q. H. Yang and F. Kang, *Carbon*, 2016, **109**, 1-6.
- 36. J. Qu, S. Lv, X. Peng, S. Tian, J. Wang and F. Gao, J. Alloy Compd., 2016, 671, 17-23.
- S. Niu, W. Liu, G. Zhou, Y. He, B. Li, Q. H. Yang and F. Kang, *Chem. Commun.* 2015, **51**, 17720-17723.
- 38. Y. L. Ding, P. Kopold, K. Hahn, P. A. van Aken, J. Maier and Y. Yu, *Adv. Funct. Mater.*, 2016, **26**, 1112-1119.
- 39. L. Li, G. Zhou, L. Yin, N. Koratkar, F. Li and H. M. Cheng, *Carbon*, 2016, **108**, 120-126.
- 40. Y. Xie, L. Fang, H. Cheng, C. Hu, H. Zhao, J. Xu, J. Fang, X. Lu and J. Zhang, *J. Mater. Chem. A*, 2016, **4**, 15612-15620.
- 41. J. Song, Z. Yu, M. L. Gordin and D. Wang, *Nano Lett.*, 2016, **16**, 864-870.
- 42. S. Rehman, X. Gu, K. Khan, N. Mahmood, W. Yang, X. Huang, S. Guo and Y. Hou, *Adv. Energy Mater.*, 2016, **6**, 1502518.
- 43. L. Zhu, H. J. Peng, J. Liang, J. Q. Huang, C. M. Chen, X. Guo, W. Zhu, P. Li and Q. Zhang, *Nano Energy*, 2015, **11**, 746-755.
- 44. J. Balach, T. Jaumann, M. Klose, S. Oswald, J. Eckert and L. Giebeler, *J. Power Sources*, 2016, **303**, 317-324.
- 45. J. Liu, W. Li, L. Duan, X. Li, L. Ji, Z. Geng, K. Huang, L. Lu, L. Zhou, Z. Liu, W. Chen, L. Liu, S. Feng

and Y. Zhang, Nano Lett., 2015, 15, 5137-5142.

- 46. Y. Guo, G. Zhao, N. Wu, Y. Zhang, M. Xiang, B. Wang, H. Liu and H. Wu, *ACS Appl. Mater. interfaces*, 2016, 8, 34185-34193.
- 47. Y. Qu, Z. Zhang, X. Zhang, G. Ren, Y. Lai, Y. Liu and J. Li, *Carbon*, 2015, **84**, 399-408.
- 48. H. Wang, K. Huang, P. Wang and J. Zhong, *J.f Alloy Compd.*, 2017, **691**, 613-618.
- W. Deng, A. Hu, X. Chen, S. Zhang, Q. Tang, Z. Liu, B. Fan and K. Xiao, *J. Power Sources*, 2016, 322, 138-146.
- 50. F. Pei, T. An, J. Zang, X. Zhao, X. Fang, M. Zheng, Q. Dong and N. Zheng, *Adv. Energy Mater.*, 2016, **6**, 1502539.
- 51. J. Cao, C. Chen, Q. Zhao, N. Zhang, Q. Lu, X. Wang, Z. Niu and J. Chen, *Adv. Mater.*, 2016, **28**, 9629-9636.
- 52. X. Yu, J. Zhao, R. Lv, Q. Liang, C. Zhan, Y. Bai, Z.-H. Huang, W. Shen and F. Kang, *J. Mater. Chem. A*, 2015, **3**, 18400-18405.
- 53. F. Chen, J. Yang, T. Bai, B. Long and X. Zhou, *Electrochim. Acta*, 2016, **192**, 99-109.
- 54. C. Wang, F. Zhang, X. Wang, G. Huang, D. Yuan, D. Yin, Y. Cheng and L. Wang, *J. Mater. Chem. A*, 2016, **6**, 76568-76574.
- 55. J. Shan, Y. Liu, Y. Su, P. Liu, X. Zhuang, D. Wu and X. Feng, *J. Mater. Chem. A*, 2016, **4**, 314-320.
- 56. S. Niu, W. Lv, C. Zhang, F. Li, L. Tang, Y. He, B. Li, Q.-H. Yang and F. Kang, *J. Mater. Chem. A*, 2015, **3**, 20218-20224.
- 57. F. Wu, J. Li, Y. Tian, Y. Su, J. Wang, W. Yang, N. Li, S. Chen and L. Bao, *Sci. Rep.*, 2015, **5**, 13340.
- 58. L. Wang, Z. Yang, H. Nie, C. Gu, W. Hua, X. Xu, X. a. Chen, Y. Chenb and S. Huang, *J. Mater. Chem. A*, 2016, **4**, 15343-15352.
- 59. L. Li, Z. P. Wu, Hao Sun, D. Chen, J. Gao, S. Suresh, P. Chow, C. V. Singh and N. Koratkar, ACS Nano, 2015, **9**, 11342-11350.
- 60. X. Fang, W. Weng, J. Ren and H. Peng, *Adv. Mater.*, 2016, **28**, 491-496.
- 61. G. Zhou, L. Li, C. Ma, S. Wang, Y. Shi, N. Koratkar, W. Ren, F. Li and H. M. Cheng, *Nano Energy*, 2015, **11**, 356-365.
- 62. S. H. Chung, C. H. Chang and A. Manthiram, *Small*, 2016, **12**, 939-950.
- 63. P. Y. Zhai, J. Q. Huang, L. Zhu, J. L. Shi, W. Zhu and Q. Zhang, *Carbon*, 2017, **111**, 493-501.
- 64. H. S. Kang and Y. K. Sun, *Adv. Funct. Mater.*, 2016, **26**, 1225-1232.
- 65. J. L. Shi, H. J. Peng, L. Zhu, W. Zhu and Q. Zhang, *Carbon*, 2015, **92**, 96-105.
- 66. C. Wu, L. Fu, J. Maier and Y. Yu, J. Mater. Chem. A, 2015, **3**, 9438-9445.