Supporting Information

Bifunctional Non-precious Metal Electrocatalysts of Porous WO₂ Hexahedral Networks for Full Water Splitting

Chang Shu,^a Shuai Kang,^a Yanshuo Jin, ^a Xin Yue^a and Pei Kang Shen*ab

^a State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China

^b Collaborative Innovation Center of Renewable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guangxi University, Nanning 530004, P. R. China.

*E-mail: <u>pkshen@gxu.edu.cn</u>

Additional experimental data

Figure S1. Photographs of the nickel foam (left), the precursor (middle) and WO_2 HN/NF (right).

Figure S2. (a) XRD pattern of WO₂ HN/NF (black dot indicates nickel element). (b) Raman spectrum of WO₂ HN/NF.

Figure S3. (a)The XRD pattern of the precursor. (b) Raman spectra of the precursor.

Figure S4. XPS spectra of WO_2 HN/NF. (a) Survey scan curves. (b) W 4f peaks.

Figure S5. XPS spectra of WO₃/NF. (a) Survey scan curves. (b) W 4f peaks.

Figure S6. The SEM of the precursor.

Figure S7. N_2 adsorption-desorption isotherms of porous WO₂ HN/NF (left) and the corresponding pore size distribution of porous WO₂ HN/NF (right).

Figure S8. EDX spectrum of porous WO₂ hexahedral networks supported on nickel foam.

Figure S9. EDX spectrum of WO_2 hexahedral networks supported on nickel foam.

Figure S10. The morphology image of porous $WO_2 HN/NF$ after HER.

Figure S11. EDX spectrum of porous WO_2 HN/NF after electrochemical test.

Molecular models and band structures of WO₂

The model of WO₂ was established by deleting one of the tungsten atoms, as shown in Figure S12. The dimension of such a unit cell is 7.14 Å × 7.14 Å × 20 Å with sufficient vacuum space in Z direction to separate the interaction between periodic images. A Gamma centred $10 \times 10 \times 1$ *K*-point mesh was used to sample the Brillouin zone for geometry optimization, and 40 *K*-points along each high-symmetry line in the Brillouin zone were used to obtain band structure. The cut-off energies for plane waves were chosen to be 500 eV, and the convergence tolerance of force on each atom during structure relaxation was set to be 0.001 eV/Å. Polarization effect was considered in all cases.

Active sites and adsorption properties

The free energy of the adsorbed state is calculated as

 $\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE}$ - $T\Delta S$

where ΔE_{H^*} is the hydrogen chemisorption energy (either integral or differential), and ΔE_{ZPE} is the difference corresponding to the zero point energy between the adsorbed state and the gas phase. As the vibrational entropy of H* in the adsorbed state is small, the entropy of adsorption of $\frac{1}{2}$ H₂ is $\Delta S_H \approx -\frac{1}{2}S_{H2}^0$, where S_{H2}^0 is the entropy of H₂ in the gas phase at the standard conditions. Therefore the overall corrections are taken as in

 $\Delta G_{\rm H^*} = \Delta E_{\rm H^*} + 0.24 \ eV$

The exploration of HER active sites was conducted by placing a hydrogen atom above each W atom of the WO₂ as shown in Figure S13;

Figure S12. The model is a $1 \times 1 \times 4$ cell along the [011] direction. Blue balls represent

tungsten atoms and red balls represent O atoms.

Figure S13. We put H atoms at the top of W atoms. White balls represent H atoms.

There are 8 sites. We have calculated several combinations.

According to the formula: $\Delta E_{H^*} = E_{tot} - E_{cat} - E_{H^1}$, we have come to this conclusion. The results comparing current catalysts are shown in the following figure.

	$\Delta E_{\mathrm{H}^{*}}(\mathrm{eV})$	$\Delta \mathbf{G}_{\mathrm{H}^*}$ (eV)	Kel.
Pt	-0.33	-0.09	2
Ir	-0.21	0.03	2
Мо	-0.61	-0.37	2
W	-0.67	-0.43	2
MoS ₂	-0.16	0.08	1
WO ₂	-0.32	-0.08	This work

Table S1 Hydrogen Adsorption Energy (ΔE_{H^*}) on Different Electrocatalysts for HER

Figure S14. The morphology image of porous WO₂ HN/NF after OER.

Figure S15. (a) The Nyquist plots of porous $WO_2 HN/NF$ for HER at $\eta=0, 50, 100, 150$ and 200 mV (b) The Nyquist plots of porous $WO_2 HN/NF$ for OER at $\eta=170, 220, 270, 320$ and 370 mV (c) The electrical equivalent circuit is used to model the system of the catalysts

Synthesis of Control group /Ni: This is a control experiment, and we put Ni foam with pretreatment in 30 mL distilled water. Then they are transferred to a 50 mL Teflon lined stainless steel reaction vessel. The other conditions not change. Finally, the samples are annealed 1 h at 600 °C in H₂.

Figure S16. The XRD pattern of WO₃/NF.

Figure S17. Polarization curves of WO₃/NF, and WO₂ HN/NF for HER (left) and OER (right) in 1 M KOH.

The precursor shows the current density of -10 mA cm^{-2} at an overpotential of 286 mV for HER and 10 mA cm⁻² at an overpotential of 380 mV for OER in alkaline electrolyte

(1.0 M KOH). In contrast, porous WO_2 HN/NF has more excellent electrochemical performance than precursor.

Figure S18. Polarization curves of precursor for HER (left) and OER (right) in 1 M KOH.

Figure S19. XRD patterns of the precursor at different temperatures in H₂ atmosphere.

Figure S20. Polarization curves of samples at different temperatures (200 °C, 400 °C, 600 °C) for HER (left) and OER (right) in 1 M KOH.

Figure S21. The amount of H_2 / O_2 theoretically calculated and experimentally measured versus time for both HER and OER of porous WO₂ HN/NF. The current density is 10 mA cm⁻² for 1 hours.

Catalyst	Electrolyte	HER Potential vs. RHE (V) @ 10 mA cm ⁻²	OER Potential vs. RHE (V) @ 10 mA cm ⁻²	Full Water Splitting Potential (V) @ 10 mA cm ⁻²	Reference
Ni ₂ P/Ni/NF	1.0 M KOH	-0.098	1.43	1.49	3
Ni ₅ P ₄ Films/Ni foil	1.0 M KOH	-0.15	1.56	Below 1.7	4
Ni ₃ S ₂ /NF	1.0 M KOH	-0.223	1.49	$\sim 1.76(@ \sim 13 \text{ mA cm}^{-2})$	5
Fe ₁₀ Co ₄₀ Ni ₄₀ P/NF	1.0 M KOH	-0.068	1.48	1.57	6
NiSe /Ni foam	1.0 M KOH	-0.096	1.5 (@~20 mA	1.63	7
			cm ⁻²)		
Compact MoO ₂ /NF	1.0 M KOH	-0.124	1.59	1.73	8
MWCMNs ^a	0.5 M H ₂ SO ₄	-0.056			1
d-WSe ₂ /CFM ^b	0.5 M H ₂ SO ₄	-0.228			9
G-WS ₂ /Ti plate ^c	0.5 M H ₂ SO ₄	-0.306			10
Porous WO ₂ HN/NF	1.0 M KOH	-0.048	1.5	1.59	This work

Table S2. HER, OER and full water splitting activities of the porous WO_2 HN/NF, and reported catalysts.

a: Metallic WO2-Carbon Mesoporous Nanowires

b: 3D dendritic WSe₂ on conductive carbon nanofiber mats

c: graphene film-confined WS₂ nanoparticles

- 1. R. Wu, J. F. Zhang, Y. M. Shi, D. Liu and B. Zhang, *Journal of the American Chemical Society*, 2015, **137**, 6983-6986.
- 2. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *Journal of The Electrochemical Society*, 2005, **152**, J23.
- 3. B. You, N. Jiang, M. L. Sheng, M. W. Bhushan and Y. J. Sun, *ACS Catal.*, 2016, 6, 714-721.
- 4. M. Ledendecker, S. K. Calderon, C. Papp, H. P. Steinruck, M. Antonietti and M. Shalom, *Angew. Chem. Int. Ed.*, 2015, **54**, 12361-12365.
- 5. L.L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *J. Am. Chem. Soc.*, 2015, **137**, 14023-14026.
- 6. Z. Zhang, J. Hao, W. Yang and J. Tang, RSC Adv., 2016, 6, 9647-9655.
- 7. C. Tang, N. Y. Cheng, Z. H. Pu, W. Xing and X. P. Sun, *Angew. Chem. Int. Ed.*, 2015, **54**, 9351-9355.
- 8. Y. S. Jin, H. T. Wang, J. J. Li, X. Yue, Y. J. Han, P. K. Shen and Y. Cui, *Adv. Mater.*, 2016, **28**, 3785-3790.
- M. L. Zou, J. F. Zhang, H. Zhu, M. L. Du, Q. F. Wang, M. Zhang and X. W. Zhang, J. Mater. Chem. A, 2015, 3, 12149-12153.
- Z. H. Pu, Q. Liu, A. M. Asiri, A. Y. Obaid and X. P. Sun, *Electrochim. Acta*, 2014, 134, 8-12.