Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synergistic Effect Induced Ultrafine SnO₂/Graphene Nanocomposite as Advanced Lithium/Sodium-ion Batteries Anodes

Weihua Chen^{*a,b}, Keming Song^a, Liwei Mi^c, Xiangming Feng^a, Jianmin Zhang^a, Shizhong Cui^c, Chuntai Liu^b*

^aCollege of Chemistry and Molecular Engineering, Key Laboratory of Material Processing and Mold of Ministry of Education, Zhengzhou University, Zhengzhou 450001 P. R. China Tel:+86-371-67783126 E-mail: chenweih@zzu.edu.cn

^bNational Engineering and Research Center for Adv. Polymer Processing Technology Zhengzhou University, Zhengzhou 450001 P. R. China E-mail: <u>ctliu@zzu.edu.cn</u>

^cCenter for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007 P.R. China

Keywords: SnO₂/graphene, methodology, large scale, synergistic effect, Li/Na-ion batteries

Figure S1. (a), The process that graphene oxide was reduced by $Na_2S_2O_3$, in order from left to right, pristine GO, adding $Na_2S_2O_3$, 5, 10, 15, 30, 60, and 120 min. (b), dispersion of graphene after 24 h, no layer. (c), graphene after freeze-drying.

Figure S2. Thermogravimetric analysis curves of prepared $SnO_2/G-S$ through one-step synergetic effect and $SnO_2/G-O$ through two-step method in order of SnO_2 nanoparticles' formation and GO's reduction.

Figure S3. SEM images of prepared pristine graphene (a, b) and SnO₂(c, d)

Figure S4. EDS mappings of $SnO_2/G-S$ (a) and $SnO_2/G-O$ (b) composites.

Figure S5. HRTEM images prepared $SnO_2/G-S$ through one-step synergetic effect of SnO_2 nanoparticles' formation and GO's reduction.

Figure S6. high-resolution C 1s (a) and O 1s (b) XPS spectrum of the $SnO_2/G-S$ and $SnO_2/G-O$ composites.

Figure S7. Raman spectras of $SnO_2/G-S$ and $SnO_2/G-O$, ratio of I_D/I_G is generally used for degree of defect in the graphene roughly.

Figure S8. The electrochemical performance of prepared pristine graphene as working electrode in Li-ion batteries (a) and Na-ion batteries (b), respectively.

Figure S9. The electrochemical performance of prepared $SnO_2/G-O$ electrode through twostep method in order of SnO_2 nanoparticles' formation and GO's reduction in Na-ion batteries.

Figure S10. EDS mappings (a, b, c, d) of $SnO_2/G-S$ electrode after 10 cycles in Li-ion batteries.

Figure S11. EDS mappings (a, b, c, d, e) and EDS spectra (f) of SnO₂/G-S electrode after sodiation to 0.01V in Na-ion batteries.

Figure S12. EDS mappings (a, b, c, d, e) and EDS spectra (f) of SnO₂/G-S electrode after desodiation to 3V in Na-ion batteries.

Figure S13. Morphology of pristine SnO₂/G-S through one-step synergetic effect of SnO₂ nanoparticles' formation and GO's reduction.(a, b, c) after 10 cycles in Li-ion batteries.(b, e, f) after 10 cycles in Na-ion batteries.(g, h, i) SEM images.(a, d, g) TEM images.(b, e, h, c, f, i).

Figure S14. SEM images of $SnO_2/G-S-80(a)$, $SnO_2/G-S-60(b)$ and $SnO_2/G-S-40(c)$ materials

Figure S15. Comparison of cycling stability and reversible capacity of SnO_2/G materials with different loading of SnO_2 active materials.

	Rs	CPE-T(E-5)	R1	W1-R
SnO ₂ /G-S	3.709	2.6	117.6	55
SnO ₂ /G-O	5.237	2.8	237.2	30

Table S1. Impedance parameters of the fitting equivalent circuit about $SnO_2/G-S$ and $SnO_2/G-O$ electrodes in Li-ion batteries.

Table S2. Impedance parameters of the fitting equivalent circuit about $SnO_2/G-S$ and $SnO_2/G-O$ electrodes in Na-ion batteries.

	Rs	CPE-T(E-3)	R1	W1-R
SnO ₂ /G-S	19.72	2.6	24.92	18.1
SnO ₂ /G-O	3.287	0.19	70.44	1000

Table S3. Summary of capacity of reported graphene in Li-ion batteries

Materials	Capacity	Ref
Graphene aerogel	0.1A/g, 300mAh/g 0.5A/g, 200mAh/g 1A/g, 100mAh/g	2015, <i>Nano Energy</i> ^[1]
Graphene sheet	0.1A/g,269mAh/g	2012 , <i>Adv. Funct. Mater.</i> ^[2]
EDA-rGO	0.2A/g,20mAh/g	2016, Energy Environ. Sci. ^[3]

Reference

[1] Z. Li, J. Ding, H. Wang, K. Cui, T. Stephenson, D. Karpuzov, D. Mitlin, *Nano Energy* **2015**, *15*, 369.

[2] X. Li, X. Meng, J. Liu, D. Geng, Y. Zhang, M. N. Banis, Y. Li, J. Yang, R. Li, X. Sun, M. Cai, M. W. Verbrugge, *Adv. Funct. Mater.* 2012, *22*, 1647.

[3] Y. Jiang, M. Wei, J. Feng, Y. Ma, S. Xiong, Energy Environ. Sci. 2016, 9, 1430.

Sample	method	Performance	Ref
SnO ₂ /G-S	80°C Constant pressure	0.1A/g, 90cycles, 1420mAh/g 0.5A/g, 300cycles, 1170mAh/g 1A/g, 230cycles, 960mAh/g	This work
SnO ₂ Films	Vacuum- magnetron - sputtering	0.2C,800mAh/g	Energy Environ. Sci. ^[4]
SnO ₂ Nanoparticles Superlattices	400°C, Annealing	0.6A/g, 200cycles, 640mAh/g	Nat. Commun. ^[5]
Bowl-like SnO ₂ @Carbon	Long-timing stirring	0.4A/g, 100cycles, 963mAh/g	Angew. Chem. Int. Ed. ^[6]
SnO _x /Carbon	Electrospinning	0.5A/g, 200cycles, 608mAh/g	<i>Adv. Mater</i> . ^[7]
SnO ₂ /N-Doped C	Hydrothermal	0.5A/g, 100cycles, 491mAh/g	Adv. Energy Mater. ^[8]
Graphene Mesoporous SnO ₂	Hydrothermal	0.1C, 50cycles, 847.5mAh/g	Adv. Funct. Mater. ^[9]
SnO ₂ –Carbon Nanosheets	500°C annealing	0.2A/g, 300cycles, 913.3mAh/g	J. Am. Chem. Soc. ^[10]
Sn/SnO ₂ Nanocrystals	180-210°C	1A/g, 100cycles, 700mAh/g	J. Am. Chem. Soc. ^[11]
Sandwich- Stacked SnO ₂ /Cu	Rolled-up nanotechnology	0.2A/g, 150cycles, 535mAh/g	ACS NANO ^[12]
RGO/SnO ₂ Aerogel	Hydrothermal	0.1A/g, 200cycles, 718mAh/g	Nano Lett. ^[13]

Table S4. Comparison of electrochemical performance of $SnO_2/G-S$ in this work with reported related materials in Li-ion batteries.

Reference

[4] R. Hu, D. Chen, G. Waller, Y. Ouyang, Y. Chen, B. Zhao, B. Rainwater, h. Yang, M. Zhu,M. Liu, *Energy Environ. Sci.* 2016, *9*, 595.

[5] Y. Jiao, D. Han, Y. Ding, X. Zhang, G. Guo, J. Hu, D. Yang, A. Dong, *Nat. Commun.***2015**, *6*, 6420.

[6] J. Liang, X.-Y. Yu, H. Zhou, H. B. Wu, S. Ding, X. W. Lou, *Angew. Chem. Int. Ed.* **2014**, *53*, 12803.

[7] X. Zhou, Z. Dai, S. Liu, J. Bao, Y. G. Guo, Adv. Mater. 2014, 26, 3943.

[8] X. Zhou, L. Yu, X. W. D. Lou, Adv. Energy Mater. 2016, 6, 1600451.

[9] S. Yang, W. Yue, J. Zhu, Y. Ren, X. Yang, Adv. Funct. Mater. 2013, 23, 3570.

[10] S. H. Yu, D. J. Lee, M. Park, S. G. Kwon, H. S. Lee, A. Jin, K. S. Lee, J. E. Lee, M. H.

Oh, K. Kang, Y. E. Sung, T. Hyeon, J. Am. Chem. Soc. 2015, 137, 11954.

[11] K. Kravchyk, L. Protesescu, M. I. Bodnarchuk, F. Krumeich, M. Yarema, M. Walter, C. Guntlin, M. V. Kovalenko, *J Am Chem Soc* 2013, *135*, 4199.

[12] J. W. Deng, C. L. Yan, L. C. Yang, S. Baunack, S. Oswald, H. Wendrock, Y. F. Mei, O.G. Schmidt, ACS NANO 2013, 7, 6948.

[13] L. Wang, D. Wang, Z. Dong, F. Zhang, J. Jin, Nano Lett. 2013, 13, 1711.

Table S5. Comparison of electrochemical performance of SnO₂/G-S in this work with reported related materials in Na-ion batteries.

Sample	method	Performance	Ref
SnO ₂ /G-S	80°C Constant pressure	0.2A/g, 90cycles, 650mAh/g	This work
Amorphous SnO ₂ /graphene aerogel	Hydrothermal 0.05A/g, 100cycles, 380.2mAh/g		Adv. Energy Mater. ^[14]
Al ₂ O ₃ / SnO ₂ /Carbon-Cloth	Hydrothermal	0.1C, 100cycles, 375mAh/g	Nano Energy ^[15]
SnO ₂ -C	Hydrothermal 0.08A/g, 200cycle 372mAh/g		J. Mater. Chem. $A^{[16]}$
SnO ₂ /Cu	Cold-rolling method	0.2C, 200cycles, 326mAh/g	2016 , <i>J. Power</i> <i>Source</i> ^[17]

Reference

[14] L. Fan, X. Li, B. Yan, J. Feng, D. Xiong, D. Li, L. Gu, Y. Wen, S. Lawes, X. Sun, Adv. Energy Mater. 2016, 6, 1502057.

[15] Y. Liu, X. Fang, M. Ge, J. Rong, C. Shen, A. Zhang, H. A. Enaya, C. Zhou, Nano Energy 2015, 16, 399.

[16] J. Ding, Z. Li, H. Wang, K. Cui, A. Kohandehghan, X. Tan, D. Karpuzov, D. Mitlin, J. Mater. Chem. A 2015, 3, 7100.

[17] H. Bian, J. Zhang, M.-F. Yuen, W. Kang, Y. Zhan, D. Y. W. Yu, Z. Xu, Y. Y. Li, J.

Power Sources 2016, 307, 634.

Table S6. The reaction parameters of three $SnO_2/G-S$ materials with different loading of active material (the loading value was obtained by calcination at 600 °C for 2 h in air).

	GO(mg)	SnCl ₄ (mg)	Loading
SnO ₂ /G-S-80	80	308	54%
SnO ₂ /G-S-60	60	308	65%
SnO ₂ /G-S-40	40	308	77%

•