Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

ITIC Surface Modification to Achieve Synergistic Electron

Transport Layer Enhancement for Planar-Type Perovskite Solar

Cells with Efficiency Exceeding 20%

Jiexuan Jiang¹, Zhiwen Jin^{1,*}, Jie Lei¹, Qian Wang¹, Xisheng Zhang¹, Jingru Zhang¹, Fei Gao^{1,*} and Shengzhong (Frank) Liu^{1,2,*}

¹Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China. E-mail: jinzhiwen@snnu.edu.cn, feigao@snnu.edu.cn and liusz@snnu.edu.cn

²Dalian National Laboratory for Clean Energy; iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

UPS measurement:

UPS is usually used to determine the Fermi level (E_F) and the valence band maximum (E_V) with respect to vacuum level (E_{VAC}) of the fabricated thin films.^[1,2] For a photoelectron to escape the sample surface and to be collected, it has to have sufficient energy to overcome the sum of the binding energy (with respect to E_F) of its initial level and the work function (Φ), where $\Phi = E_{VAC} - E_F$. Therefore, for a fixed incident photon energy of 21.22 eV, the secondary electron cut-off (high binding energy edge) represents photoelectrons with zero kinetic energy when they escape from the sample surface. The work function Φ is determined by the difference between the incident photon energy (21.22 eV) and the binding energy of the secondary electron cut-off. The difference between E_F and E_V is determined by the intersection of the linear portion of the spectra near the Fermi edge (low binding energy region) with the baseline. **Figure 4b** shows the UPS data which allows us to determine the work function of both TiO₂ and TiO₂ coated with ITIC.

TRPL measurement:

The TRPL decay time and amplitudes are obtained using an exponential Equation (1): ^[3,4]

$$f(x) = \sum_{i} A_{i} \exp\left(-t/\tau_{i}\right) + K \tag{1}$$

where A_i is the decay amplitude, τ_i is the decay time and K is a constant for the base-line offset. To understand the recombination mechanism of the perovskite thin films on different substrates, the recombination kinetics was modelled over a range of excitation intensities using the following Equation (2):^[3,4]

$$-\frac{dn}{dt} = An + Bn^2 + Cn^3 \tag{2}$$

where n is the photogenerated excess carrier density and t is the time. The physical interpretations of these three terms are (i) the first-order decay rate is due to the trap-mediated (Shockley-Hall-Read) recombination at low injection condition; (ii) the second-order decay rate is due to the non-geminate/free carrier recombination at high injection; and (iii) the third order decay rate is for the Auger recombination. When TiO_2 /perovskite or TiO_2 /ITIC/perovskite is analyzed, the tremendous second-order decay rate is observed for the photogenerated carrier easy injection from perovskite to the TiO_2 ETL. Based on the above analysis, the PL decay time obtained by bi-exponential function is used to fit the PL decay time.

Reference:

- [1]. C.-H. M. Chuang, P. R. Brown, V. Bulović & M. G. Bawendi. *Nat. Mater.* **2014**, *13*, 796-801.
- [2]. Z. Jin, Q. Zhou, Y. Chen, P. Mao, H. Li, H. Liu, J. Wang & Y. Li. Adv. Mater. 2016, 28, 3697-3702.
- [3]. J. S. Manser & P. V. Kamat. *Nat Photon* **2014**, *8*, 737-743.
- [4]. B. S. Tosun & H. W. Hillhouse. J. Phys. Chem. Lett. 2015, 6, 2503-2508.

Figure S1. The properties of ITIC: (a) H-NMR, (b) FTIR spectrum, (c) film absorption spectrum and (d) TGA curve and the molecular structure.

Figure S2. Photographs of water droplet on: pristine TiO_2 film, different concentrate ITIC modified TiO_2 film and pristine ITIC film.

Figure S3. Properties of the perovskite solar cells based on ITIC ETL: (a) for J-V characteristics, (b) for EQE curve, (c) for J-V characteristics with different sweep directions (scan rate 200mV/s), (d) for IS result.

Figure S4. Conductivities of pristine TiO₂ film and pristine ITIC film.

Figure S5. The UV-vis analysis of ITIC films before and after DMSO and GBL mixed solvent (3:7 v/v) treatment.

Figure S6. J-V characteristics of the fabricated perovskite photovoltaic solar cells with different ETL in dark condition: (a) for TiO_2 ETL and $TiO_2/ITIC$ ETL, (b) for ITIC ETL.

Figure S7. 25 individual devices were fabricated: (a) for J-V characteristics; (b) for the PCE distribution histograms; (c) for PCE distribution; (d) for J_{SC} distribution; (e) for FF distribution; and (f) for V_{OC} distribution.

Figure S8. PCE measured as a function of time for the cells biased at 0.84 V for (a) TiO_2 ETL and 0.94 V for (b) ITIC modified TiO_2 ETL.

Figure S9. Normalized PCEs of PSCs with or without ITIC modified TiO_2 ETL: (a) after annealing different temperature for 10 min and (b) after annealing at 80 °C for different times.

Figure S10. TRPL spectrum of perovskite deposited on glass substrate.

Table S1. EIS parameters for the PSCs with 110_2 E1L and $110_2/11$ C E1	Table S1. EIS	parameters	for the	PSCs	with	$TiO_2 E'$	TL and	TiO ₂ /I	TIC ET	Ľ
--	---------------	------------	---------	------	------	------------	--------	---------------------	--------	---

Buffer layer	$R_s(\Omega)$	$R_{tr}\left(\Omega\right)$	R _{rec} (Ω)	C _{tr} (F)	C _{rec} (F)
TiO ₂	30	190	1350	5.2×10^{-8}	2.0×10^{-7}
TiO ₂ /ITIC	25	300	2800	$2.4 imes 10^{-8}$	$1.1 imes 10^{-7}$

Table S2. Parameters of the TRPL spectra based on PSCs with TiO₂ ETL and TiO₂/ITIC ETL.

Buffer layer	$\tau_{ave}(ns)$	$\tau_1(ns)$	$\tau_2(ns)$	% of τ_1	% of τ_2
TiO ₂	47.83	67.45	9.28	21.28	78.72
TiO ₂ /ITIC	17.04	34.93	7.07	10.02	89.98