Supplementary Information

Facile Synthesis of Self-Supported Mn₃O₄@C Nanotube Arrays Constituting an Ultrastable and High-Rate Anode for Flexible Li-Ion Batteries

Bin Lu^{a,b}, Jun Liu^{a,b}, Renzong Hu^{a,b}, Hui Wang^{a,b}, Jiangwen Liu^{a,b}, Min Zhu^{a,b,*}

^aSchool of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage

Materials of Guangdong Province, South China University of Technology, Guangzhou,

510641, China

^bChina-Australia Joint Laboratory for Energy & Environmental Materials, South China

University of Technology, Guangzhou, 510641, China

* Corresponding author

E-mail address: memzhu@scut.edu.cn

Figure S1. Optical photographs of pure stainless steel foil (a), stainless steel foil grown with ZnO nanorod arrays (NRAs) (b), stainless steel foil grown with ZnO@MnO₂ NRAs (c), and stainless steel foil grown with $Mn_3O_4@C$ nanotube arrays (d).

Figure S2. (a) XRD patterns of crystallized ZnO NRAs, ZnO@MnO₂ NRAs and Mn₃O₄@C nanotube arrays on stainless steel foil. The main diffraction peaks of ZnO NRAs and Mn₃O₄ nanotube arrays match well with hexagonal ZnO (JCPDS No. 36-1451) and hausmannite Mn₃O₄ phase (JCPDS No. 24-0734), respectively. (b) Raman spectrum of the Mn₃O₄@C nanotube arrays.

Figure S3. Surface SEM image of $ZnO@Mn_3O_4@C$ NRAs on steel substrate. Some top-end of the $ZnO@Mn_3O_4@C$ NRAs (red dash cycles) are without Mn_3O_4 .

Figure S4. More HRTEM image of a typical $Mn_3O_4@C$ nanotube. It clearly shows the amorphous carbon coated on the surface of Mn_3O_4 nanotube.

Figure S5. CV curves for (a) ZnO NRAs, (b) ZnO@MnO₂ NRAs from 0.0 to 3.0 V vs. Li⁺/Li at scanning rate of 0.2 mV s⁻¹.

Figure S5a and S5b display the first three CV profiles of ZnO and ZnO@MnO₂ NRAs from 0.0 to 3.0 V *vs.* Li⁺/Li, respectively. In the cathodic process, the reduction peaks at 0.96 V (Figure S5a) and 0.83 V (Figure S5b) are ascribed to the irreversible formation of the SEI film.^{1,5} The lithiation peak at 0.2V (Figure S5a) in the first cycle is corresponded to the reductive reaction of ZnO to Zn and further alloying with Li,² which is divided into two peaks located at 0.38 and 0.57 V in the followed cycles. While in Figure S5b, the lithiation peak at 0.28 V is assigned to the reduction of ZnO and MnO₂ and Zn further alloying with Li,^{1,5} which shifts to 0.64V afterwards. In the anodic process, the delithiation peaks located at 0.28, 0.52, 0.67, 1.21 V in Figure S5a and peaks at 0.28, 0.52, 0.67, 1.42 V in Figure S5b is related to the dealloying process of LiZn.^{3,4} The delithiation peak at 2.60 V in both Figure S5a and S5b is assigned to the oxidation of Zn O,² which is the featured peak of the existence of ZnO. The above related reactions could be depicted as below:

$$Zn0 + 2Li^{+} + 2e^{-} \leftrightarrow Zn + Li_20 \tag{1}$$

$$Zn + Li^{+} + e^{-} \leftrightarrow LiZn \tag{2}$$

$$MnO_2 + 4Li^+ + 4e^- \leftrightarrow 2Li_2O + Mn \tag{3}$$

Figure S6. (a) Comparison of cyclic performance for ZnO, ZnO@MnO₂, ZnO@Mn₃O₄@C, Mn₃O₄@C composite electrodes from 0.01 to 3.0 V *vs*. Li⁺/Li at 40 μ A cm⁻², the first three cycles were activated at 20 μ A cm⁻². (b) Cycle performance at different current rates (40, 100, 200 μ A cm⁻²) between 0.01 and 3.0 V, the first three cycles were activated at 20 μ A cm⁻². (c) The discharge-charge curves of Mn₃O₄@C nanotube arrays at current rate of 200 μ A cm⁻²/793 mA g⁻¹ between 0.01 and 3.0 V. (d) Rate capability of Mn₃O₄@C nanotube arrays electrode with a current density range from 50 to 400 μ A cm⁻² after three activation cycles, cut off potential: 0.01–3 V *vs*. Li⁺/Li.

Figure S7. SEM micrographs of $Mn_3O_4@C$ nanotube arrays with different loading densities: (a) 0.48 mg cm⁻², (b) 0.25 mg cm⁻². The $Mn_3O_4@C$ with the loading density of 0.25 mg cm⁻² (denoted as 0.25- $Mn_3O_4@C$) was synthesized according to the manuscript. While the $Mn_3O_4@C$ with a higher loading density of 0.48 mg cm⁻² (denoted as 0.48- $Mn_3O_4@C$) composite was prepared by prolonging the MnO_2 deposition from 4h to 6h and increased the glucose concentration from 0.4 M to 0.6 M. (The weight of $Mn_3O_4@C$ nanotube arrays on stainless steel substrate was calculated based on the mass difference of the stainless steel substrate before and after the growth of $Mn_3O_4@C$ nanotube arrays).

Figure S8. Cyclic performance of $Mn_3O_4@C$ electrodes with loading densities of 0.25 and 0.48 mg cm⁻² (denoted as 0.25-Mn_3O_4@C and 0.48-Mn_3O_4@C, respectively) at 40 μ A cm⁻²/158 mA g⁻¹ between 0.01 and 3.0 V *vs.* Li/Li⁺ after three cycles activation at 20 μ A cm⁻²/79 mA g⁻¹. The 0.25-Charge and 0.25-Discharge represent the cyclic performance curves of 0.25-Mn_3O_4@C electrode. The 0.48-Charge and 0.48-Discharge represent the cyclic performance curves of 0.48-Mn_3O_4@C electrode.

Figure S9. Low-resolution SEM image of Mn_3O_4 @C nanotube arrays on substrate after 3000 cycles at 200 μ A cm⁻²/793 mA g⁻¹.

Materials	Struture	Reversible Capacity (mA h	Current density	Ref.
		g ⁻¹)/Cycles or rate	(mA g ⁻¹)	
Mn ₃ O ₄ – graphene	Nanoparticles	600/500 th	800	[18]
		550 (rate)	1600	
		400 (rate)	4000	
Mn ₃ O ₄ /graphene	Nanorod	573/100 th	100	[26]
		411 (rate)	500	
		313 (rate)	1000	
		196 (rate)	2000	
Mn ₃ O ₄ /graphene	Nanowires	702/100 th	100	[23]
		550 (rate)	500	
		450 (rate)	1000	
		308 (rate)	2000	
	Mesoporous particles	540/100 th	80	[21]
		460 (rate)	400	
Mn ₃ O ₄ /graphene		320 (rate)	800	
		180 (rate)	1600	
	Nanobead	1100/240 th	100	[36]
Mn ₃ O ₄ /graphene		600 (rate)	200	
		500 (rate)	300	
		415 (rate)	500	
		320 (rate)	1000	
Mn ₃ O ₄ /graphene	Nanoparticle	500/40 th	60	[22]
		390 (rate)	250	
		200 (rate)	1500	
	Nanoparticle	592/50 th	100	[17]
Mn ₃ O ₄ /MWCNT		585 (rate)	250	
S		500 (rate)	500	
		387 (rate)	1000	
Mn ₃ O ₄ /CNT	Nanoparticle	380/100 th	936	[29]
		490 (rate)	468	
		460 (rate)	936	
		440 (rate)	1872	
		400 (rate)	4680	
Mn ₃ O ₄ @C	Nanorod			
		473/50 th	40	[12]
	Nanoparticles			[19]
Mn ₃ O ₄ /reduced GO		730/40 th	400	
		390 (rate)	1600	

Table S1. Summary of the representative Mn_3O_4 -based anode materials for Li-ion batteries.

Mn ₃ O ₄ /mesopor	Nononartiala	790/50th	100	[20]
ous carbon	Nanoparticle	/80/30***	100	[20]
Mn ₃ O ₄	Octahedra	746/300 th	100	[9]
		620/300 th	300	
Mn ₃ O ₄	Mesoporous	641/100 th	500	[16]
	nanotubes	525 (rate)	1000	
Mn ₃ O ₄	Spongelike	800/40 th	30	[10]
	nanoparticles			
Mn ₃ O ₄ @C	Nanotube arrays	785/350 th	158	
		635/350 th	396	
		590/3000 th	793	
		460 (rate)	1189	Our work
		420 (rate)	1586	
		400 (rate)	1982	
		375 (rate)	2380	

Reference

- G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot, J.-M. Tarascon and S. Laruelle, *J. Power Sources*, 2008, **178**, 409-421.
- 2 X. Huang, X. Xia, Y. Yuan and F. Zhou, *Electrochim. Acta*, 2011, **56**, 4960-4965.
- 3 F. Belliard and J. Irvine, J. Power Sources, 2001, 97, 219-222.
- 4 J. Liu, Y. Li, X. Huang, G. Li and Z. Li, Adv. Funct. Mater., 2008, 18, 1448-1458.
- 5 J. Fang, Y. Yuan, L. Wang, H. Ni, H. Zhu, J. Yang, J. Gui, Y. Chen and S. Guo, *Electrochim. Acta*, 2013, **112**, 364-370.