Supporting Information

## Biomass to porous carbon in one step: Directly activated biomass

## for high performance CO<sub>2</sub> storage

Norah Balahmar, Abdul S. Al-Jumialy and Robert Mokaya\*

University of Nottingham, University Park, Nottingham NG7 2RD, U. K.

E-mail: r.mokaya@nottingham.ac.uk (R. Mokaya)

**Table S1**. The ratio of peak intensity of the D-peak to G-peak  $(I_D/I_G)$  of directly activated or conventionally activated carbons derived from sawdust biomass.

| Sample  | $I_D/I_G$ |
|---------|-----------|
|         |           |
| SD2600D | 0.78      |
| SD2600  | 0.79      |
| SD2700D | 0.83      |
| SD2700  | 0.81      |
| SD2800D | 0.84      |
| SD2800  | 0.84      |
| SD4800D | 0.87      |
| SD4800  | 0.86      |

**Table S2**. Textural properties and CO<sub>2</sub> uptake of directly activated or conventionally

 activated carbons derived from *Paeonia Lactiflora* biomass

| Sample   | Surface area <sup>a</sup> (m <sup>2</sup> g <sup>-1</sup> ) | Pore volume <sup>b</sup><br>(cm <sup>3</sup> g <sup>-1</sup> ) | Pore size <sup>c</sup><br>(Å) | CO <sub>2</sub> uptak<br>(mmol g <sup>-1</sup> | ke <sup>d</sup> |        |
|----------|-------------------------------------------------------------|----------------------------------------------------------------|-------------------------------|------------------------------------------------|-----------------|--------|
|          |                                                             |                                                                |                               | 0.15 bar                                       | 1 bar           | 20 bar |
| PLF2800D | 2349 (1915)                                                 | 1.48 (0.86)                                                    | 8.5/11/20                     | 0.9                                            | 3.9             | 17.5   |
| PLF2800  | 1908 (1471)                                                 | 1.20 (0.67)                                                    | 8/11/20                       | 0.6                                            | 2.8             | 16.0   |

The values in the parenthesis refer to: <sup>a</sup>micropore surface area and <sup>b</sup>micropore volume. <sup>c</sup>Pore size distribution maxima obtained from NLDFT analysis. <sup>d</sup>CO<sub>2</sub> uptake at 25 °C and various pressures (i.e., 0.15 bar, 1 bar and 20 bar).

| Sample  | Surface area <sup>a</sup><br>(m <sup>2</sup> g <sup>-1</sup> ) | Pore volume<br>(cm <sup>3</sup> g <sup>-1</sup> ) | <sup>b</sup> Pore size <sup>c</sup><br>(Å) | CO <sub>2</sub> upt<br>(mmol g | ake <sup>d</sup><br>5 <sup>-1</sup> ) |        |
|---------|----------------------------------------------------------------|---------------------------------------------------|--------------------------------------------|--------------------------------|---------------------------------------|--------|
|         |                                                                |                                                   |                                            | 0.15 bar                       | 1 bar                                 | 20 bar |
| SW2600D | 976 (692)                                                      | 0.50 (0.27)                                       | 6/8/12                                     | 1.0                            | 2.7                                   | 8.0    |
| SW2600  | 1034 (923)                                                     | 0.46 (0.37)                                       | 6/8/12                                     | 1.3                            | 3.8                                   | 7.8    |
| SW2700D | 1986 (1350)                                                    | 0.96 (0.53)                                       | 6/8/12/19                                  | 0.8                            | 2.6                                   | 11.4   |
| SW2700  | 1624 (1442)                                                    | 0.73 (0.58)                                       | 6/8/9/12                                   | 1.2                            | 4.2                                   | 12.4   |
| SW2800D | 3095 (1009)                                                    | 1.68 (0.39)                                       | 6/8/12/24                                  | 0.5                            | 2.2                                   | 13.5   |
| SW2800  | 2085 (1667)                                                    | 0.93 (0.66)                                       | 6/8/12/19                                  | 0.8                            | 3.4                                   | 15.5   |

**Table S3**. Textural properties and CO<sub>2</sub> uptake of directly activated or conventionally activated carbons derived from seaweed (*Sargassum fusiforme*).

The values in the parenthesis refer to: <sup>a</sup>micropore surface area and <sup>b</sup>micropore volume. <sup>c</sup>Pore size distribution maxima obtained from NLDFT analysis. <sup>d</sup>CO<sub>2</sub> uptake at 25 °C and various pressures (i.e., 0.15 bar, 1 bar and 20 bar).

|                                            | CO <sub>2</sub> uptake (mmol/g) |          | Reference |
|--------------------------------------------|---------------------------------|----------|-----------|
|                                            | 1 bar                           | 0.15 bar |           |
| Sawdust-derived activated carbon           | 4.8                             | 1.2      | 1         |
| KOH-activated templated carbons            | 3.4                             | ~1.0     | 2         |
| Hierarchical porous carbon (HPC)           | 3.0                             | ~0.9     | 3         |
| Petroleum pitch-derived activated carbon   | 4.55                            | ~1.0     | 4         |
| Activated carbon spheres                   | 4.55                            | ~1.1     | 5         |
| Phenolic resin activated carbon spheres    | 4.5                             | ~1.2     | 6         |
| Poly(benzoxazine-co-resol)-derived carbon  | 3.3                             | 1.0      | 7         |
| Fungi-derived activated carbon             | 3.5                             | ~1.0     | 8         |
| Chitosan-derived activated carbon          | 3.86                            | ~1.1     | 9         |
| Polypyrrole derived activated carbon       | 3.9                             | ~1.0     | 10        |
| Soya bean derived N-doped activated carbon | 4.24                            | 1.2      | 11        |
| N-doped ZTCs                               | 4.4                             | ~1.0     | 12        |
| Activated templated N-doped carbon         | 4.5                             | 1.4      | 13        |
| Polyaniline derived activated carbon       | 4.3                             | 1.38     | 14        |
| N-doped activated carbon monoliths         | 5.14                            | 1.25     | 15        |
| Activated N-doped carbon                   | 3.2                             | 1.5      | 16        |
| Activated hierarchical N-doped carbon      | 4.8                             | 1.4      | 17        |
| Activated N-doped carbon from algae        | 4.5                             | ~1.1     | 18        |

**Table S4.** CO<sub>2</sub> uptake of various porous carbons at 25 °C and 0.15 bar or 1 bar (Table adapted from ref. 41)

1. M. Sevilla and A. B. Fuertes, Energy Environ. Sci., 2011, 4, 1765.

- 2. M. Sevilla and A. B. Fuertes, J. Colloid Interface Sci., 2012, 366, 147.
- 3. G. Srinivas, V. Krungleviciute, Z. X. Guo and T. Yildirim, Energy Environ. Sci., 2014, 7, 335.
- 4. J. Silvestre-Albero, A. Wahby, A. Sepulveda-Escribano, M. Martinez-Escandell, K. Kaneko and F. Rodriguez-Reinoso, *Chem. Commun.*, 2011, **47**, 6840.
- 5. N. P. Wickramaratne and M. Jaroniec, ACS Appl. Mater. Interfaces, 2013, 5, 1849.
- 6. N. P. Wickramaratne and M. Jaroniec, J. Mater. Chem. A, 2013, 1,112.
- G. P. Hao, W. C. Li, D. Qian, G. H. Wang, W. P. Zhang, T. Zhang, A. Q. Wang, F. Schuth, H. J. Bongard and A. H. Lu, *J. Am. Chem. Soc.*, 2011, 133, 11378.
- 8. J. Wang, A. Heerwig, M. R. Lohe, M. Oschatz, L. Borchardt and Stefan Kaskel, *J. Mater. Chem.*, 2012, 22, 13911.
- 9. X. Fan, L. Zhang, G. Zhang, Z. Shu, J. Shi, Carbon, 2013, 61, 423.
- 10. M. Sevilla, P. Valle-Vigon and A. B. Fuertes, Adv. Funct. Mater., 2011, 21, 2781.
- 11. W. Xing, C. Liu, Z. Y. Zhou, L. Zhang, J. Zhou, S. P. Zhuo, Z. F. Yan, H. Gao, G. Q. Wang and S. Z. Qiao, *Energy Environ. Sci.*, 2012, **5**, 7323.
- 12. Y. D. Xia, R. Mokaya, G. S. Walker and Y. Q. Zhu, Adv. Energy Mater., 2011, 1, 678.
- 13. Y. Zhao, L. Zhao, K. X. Yao, Y. Yang, Q. Zhang and Y. Han, J. Mater. Chem., 2012, 22, 19726.
- 14. Z. Zhang, J. Zhou, W. Xing, Q. Xue, Z. Yan, S. Zhuo and S. Z. Qiao, *Phys. Chem. Chem. Phys.*, 2013, **15**, 2523
- 15. M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks and Hiroshi Uyama, *Chem. Commun.*, 2012, **48**, 10283.
- 16. M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf and K. S. Kim, Environ. Sci. Technol., 2013, 47, 5467.
- 17. D. Lee, C. Zhang, C. Wei, B. L. Ashfeld and H. Gao, J. Mater. Chem. A, 2013, 1, 14862.
- 18. M. Sevilla, C. Falco, M. M. Titirici and A. B. Fuertes, RSC Advances, 2012, 2, 12792.

| Sample  | IAST selectivity (S) |
|---------|----------------------|
| SD2600D | 46                   |
| SD2600  | 47                   |
| SD2700D | 42                   |
| SD2700  | 41                   |
| SD2800D | 30                   |
| SD2800  | 29                   |
| SD4800D | 23                   |
| SD4800  | 25                   |
|         |                      |

**Table S5**. Selectivity (S) for  $CO_2$  of directly activated or conventionally activated carbons derived from sawdust biomass calculated using the IAST model.

Selectivity (S) was calculated according to the equation;  $S = n(CO_2) p(N_2)/(n(N_2) p(CO_2))$ , where S is selectivity for CO<sub>2</sub>, n is uptake of CO<sub>2</sub> or N<sub>2</sub> in mmol g<sup>-1</sup> at 0.15 bar and 0.85 bar, respectively,  $p(N_2)$  is 0.85 and  $p(CO_2)$  is 0.15).

| Sample  | CO <sub>2</sub> upta<br>(mmol g <sup>-1</sup> | CO <sub>2</sub> uptake <sup>a</sup><br>(mmol g <sup>-1</sup> ) |        |  |
|---------|-----------------------------------------------|----------------------------------------------------------------|--------|--|
|         | 0.15 bar                                      | 1 bar                                                          | 20 bar |  |
| SD2600D | 2.4                                           | 6.1                                                            | 10.4   |  |
| SD2600  | 2.5                                           | 6.6                                                            | 11.2   |  |
| SD2700D | 2.6                                           | 7.3                                                            | 13.4   |  |
| SD2700  | 2.2                                           | 6.8                                                            | 13.8   |  |
| SD2800D | 1.7                                           | 6.1                                                            | 23.8   |  |
| SD2800  | 1.5                                           | 5.8                                                            | 21.7   |  |
| SD4800D | 1.1                                           | 4.8                                                            | 30.3   |  |
| SD4800  | 0.9                                           | 4.1                                                            | 30.7   |  |

**Table S6**.  $CO_2$  uptake at 0 °C of directly activated or conventionally activated carbons derived from sawdust biomass

<sup>a</sup>CO<sub>2</sub> uptake at 0 °C and various pressures (i.e., 0.15 bar, 1 bar and 20 bar).

| Sample                        | $CO_2$ uptake <sup>d</sup> (mmol g <sup>-1</sup> ) at 1 bar | Reference |
|-------------------------------|-------------------------------------------------------------|-----------|
| SD2600D                       | 6.1                                                         | This work |
| SD2600                        | 6.6                                                         | This work |
| SD2700D                       | 7.3                                                         | This work |
| SD2700                        | 6.8                                                         | This work |
| SD2800D                       | 6.1                                                         | This work |
| SD2800                        | 5.8                                                         | This work |
| SD4800D                       | 4.8                                                         | This work |
| SD4800                        | 4.1                                                         | This work |
| N-Doped microporous carbon    | 2.7                                                         | 1         |
| Microporous carbon            | 2.3                                                         | 2         |
| Microporous organic polymer   | 3.5                                                         | 3         |
| Covalent organic framework    | 4.0                                                         | 4         |
| Hollow octahedral carbon cage | 4.0                                                         | 5         |
| Hierarchically porous carbon  | 4.6                                                         | 6         |
| N-Doped carbon monolith       | 4.2                                                         | 7         |
| Porous carbon sheets          | 4.3                                                         | 8         |
| NPCNS carbon                  | 4.4                                                         | 9         |

**Table S7**. CO<sub>2</sub> uptake at 0 °C and 1 bar of various carbons compared to study carbons.

- J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, ACS Appl. Mater. Interfaces, 2013, 5, 3160.
- 2. D. L. Sivadas, R. Narasimman, R. Rajeev, K. Prabhakaran and K. N. Ninan, *J. Mater. Chem. A*, 2015, **3**, 16213.
- 3. R. Du, N. Zhang, H. Xu, N. Mao, W. Duan, J. Wang, Q. Zhao, Z. Liu and J. Zhang, *Adv. Mater.*, 2014, **26**, 8053.
- 4. N. Huang, X. Chen, R. Krishna and D. Jiang, Angew. Chem., Int. Ed., 2015, 54, 2986.
- 5. A. Aijaz, J.-K. Sun, P. Pachfule, T. Uchida and Q. Xu, Chem. Commun., 2015, 51, 13945.
- 6. S. J. Yang, M. Antonietti and N. Fechler, J. Am. Chem. Soc., 2015, 137, 8269.
- N. López-Salas, M. C. Gutiérrez, C. O. Ania, J. L. G. Fierro, M. L. Ferrer and F. del Monte, J. Mater. Chem. A, 2014, 2, 17387.
- G.-P. Hao, Z.-Y. Jin, Q. Sun, X.-Q. Zhang, J.-T. Zhang and A.-H. Lu, *Energy Environ. Sci.*, 2013, 6, 3740.
- 9. J. Gong, H. Lin, M. Antonietti and J. Yuan, J. Mater. Chem. A, 2016, 4, 7313.



**Supporting Figure S1**. Thermogravimetric analysis (TGA) curve of sawdust-derived directly activated (SDxTD) or conventionally generated, via hydrothermal carbonisation, (SDxT) carbons.



**Supporting Figure S2**. Powder XRD patterns of sawdust-derived directly activated (SDxTD) or conventionally generated, via hydrothermal carbonisation, (SDxT) carbons prepared at KOH/carbon ratio of (a) 2 or (b) 4.



**Supporting Figure S3**. IR spectra of sawdust-derived directly activated (SD2*T*D) and conventionally generated (SD2*T*) carbons prepared at KOH/carbon ratio of 2 (A and B) or 4 (C) and various temperatures; (A) 600 °C, (B and C) 800 °C.



**Supporting Figure S4**. Pore size distribution of sawdust-derived directly activated (SD2*T*D) and conventionally generated (SD2*T*) carbons prepared at KOH/carbon ratio of 2 and (A) 600 °C or (B) 800 °C.



**Supporting Figure S5**. Nitrogen sorption isotherms (A) and corresponding pore size distribution curves (B) of sawdust-derived directly activated (SD4800D) or conventionally generated, via hydrothermal carbonisation, (SD4800) carbons prepared at 800 °C and KOH/carbon ratio of 4.



**Supporting Figure S6**. Pore size distribution curves of sawdust-derived directly activated (SD4800D) or conventionally generated, via hydrothermal carbonisation, (SD4800) carbons prepared at 800 °C and KOH/carbon ratio of 4.



**Supporting Figure S7**. Nitrogen sorption isotherms (A) and corresponding pore size distribution curves (B) of directly activated (PLF2800D) or conventionally generated, via hydrothermal carbonisation, (PLF2800) carbons derived from the flowering plant *Paeonia Lactiflora*. The carbons were prepared at 800 °C and KOH/carbon ratio of 2.



**Supporting Figure S8**. Nitrogen sorption isotherms of directly activated (SW2TD) or conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (*Sargassum fusiforme*). The carbons were prepared at KOH/carbon ratio of 2.



**Supporting Figure S9**. Pore size distribution curves of directly activated (SW2TD) or conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (*Sargassum fusiforme*). The carbons were prepared at KOH/carbon ratio of 2 and various temperatures; (A) 600 °C, (B) 700 °C and (C) 800 °C.



**Supporting Figure S10**. Powder XRD patterns of directly activated (SW2TD) or conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (*Sargassum fusiforme*). The carbons were prepared at KOH/carbon ratio of 2.



Supporting Figure S11. SEM images of raw sawdust.



**Supporting Figure S12**. SEM images of sawdust-derived directly activated (SDxTD) or conventionally generated, via hydrothermal carbonisation, (SDxT) carbons.



**Supporting Figure S13**. SEM images of directly activated (SW2TD) or conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (*Sargassum fusiforme*). The carbons were prepared at KOH/carbon ratio of 2.



**Supporting Figure S14**.  $CO_2$  uptake isotherms at 25 °C and 0 - 20 bar (A) and 0 - 1 bar (B) for sawdust-derived directly activated (SD4800D) or conventionally generated, via hydrothermal carbonisation, (SD4800) carbons prepared at 800 °C and KOH/carbon ratio of 4.



**Supporting Figure S15**.  $CO_2$  uptake isotherms at 0 °C and 0 - 20 bar (A) and 0 - 1 bar (B) for sawdust-derived directly activated (SD4800D) or conventionally generated, via hydrothermal carbonisation, (SD4800) carbons prepared at 800 °C and KOH/carbon ratio of 4.



**Supporting Figure S16**.  $CO_2$  uptake isotherms at 25 °C and 0 - 20 bar (A) and 0 - 1 bar (B) for directly activated (PLF2800D) or conventionally generated, via hydrothermal carbonisation, (PLF2800) carbons derived from the flowering plant *Paeonia Lactiflora*. The carbons were prepared at 800 °C and KOH/carbon ratio of 2.



**Supporting Figure S17**. CO<sub>2</sub> uptake isotherms at 25 °C and 0 - 20 bar (A) and 0 – 1 bar (B) for directly activated (SW2TD) or conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (*Sargassum fusiforme*). The carbons were prepared at KOH/carbon ratio of 2.