Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Novel ethynyl-pyrene substituted phenothiazine based metal free organic dyes in DSSC with 12 % conversion efficiency

Bhanumathi Nagarajan, Suman Kushwaha, Ramachandran Elumalai, Sudip Mandal, Kothandaraman Ramanujam* and Dhamodharan Raghavachari*

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

*E-mail for corresponding authors: <u>rkraman@iitm.ac.in</u>, <u>damo@iitm.ac.in</u>

Table of Contents

- 1. Scheme S1. Synthetic procedure for the starting materials.
- 2. **Table S1**. The calculated maximum wavelength (λ_{max} in nm), oscillator strength (*f*) and the major contributions of percentage transitions of the dyes (λ_{max} is the maximum wavelength measured experimentally).
- 3. Figure S1. Powder X-ray diffraction pattern of TiO₂.
- 4. Figure S2. ¹H NMR spectrum of donor 1
- 5. Figure S3. Expanded¹H NMR spectrum of donor 1
- 6. Figure S4. ¹³C NMR spectrum of donor 1
- 7. Figure S5. Expanded ¹³C NMR spectrum of donor 1
- 8. Figure S6. ¹H NMR spectrum of donor 2
- 9. Figure S7. Expanded ¹H NMR spectrum of donor 2
- 10. Figure S8. ¹³C NMR spectrum of donor 2
- 11. Figure S9. Expanded ¹³C NMR spectrum of donor 2
- 12. Figure S10. ¹H NMR spectrum of dye 1
- 13. Figure S11. Expanded ¹H NMR spectrum of dye 1
- 14. Figure S12. ¹³C NMR spectrum of dye 1
- 15. Figure S13. Expanded ¹³ C NMR spectrum of dye 1
- 16. Figure S14. COSY NMR spectrum of dye 1
- 17. Figure S15. Expanded COSY NMR spectrum of dye 1
- 18. Figure S16. DEPT NMR spectrum of dye 1
- 19. Figure S17. ¹H NMR spectrum of dye 2
- 20. Figure S18. Expanded ¹H NMR spectrum of dye 2
- 21. Figure S19. ¹³C NMR spectrum of dye 2
- 22. Figure S20. Expanded ¹³C NMR spectrum of dye 2
- 23. Figure S21. COSY NMR spectrum of dye 2
- 24. Figure S22. Expanded COSY NMR spectrum of dye 2
- 25. Figure S23. DEPT NMR spectrum of dye 2
- 26. Figure S24. ¹H NMR spectrum of dye 3
- 27. Figure S25. Expanded ¹H NMR spectrum of dye 3
- 28. Figure S26. ¹³C NMR spectrum of dye 3

- 29. Figure S27. Expanded ¹³C NMR spectrum of dye 3
- 30. Figure S28. COSY NMR spectrum of dye 3
- 31. Figure S29. Expanded COSY NMR spectrum of dye 3
- 32. Figure S30. DEPT NMR spectrum of dye 3
- 33. Figure S31. ¹H NMR spectrum of dye 4
- 34. Figure S32. Expanded ¹H NMR spectrum of dye 4
- 35. Figure S33.¹³C NMR spectrum of dye 4
- 36. Figure S34. Expanded ¹³C NMR spectrum of dye 4
- 37. Figure S35. COSY NMR spectrum of dye 4
- 38. Figure S36 Expanded COSY NMR spectrum of dye 4
- **39. Figure S37**. DEPT NMR spectrum of dye **4**
- 40. Figure S38. ¹H NMR spectrum of dye 5
- 41. Figure S39. Expanded ¹H NMR spectrum of dye 5
- 42. Figure S40. ¹³C NMR spectrum of dye 5
- 43. Figure S41. Expanded ¹³C NMR spectrum of dye 5
- 44. Figure S42. COSY NMR spectrum of dye 5
- 45. Figure S43. Expanded COSY NMR spectrum of dye 5
- 46. Figure S44. DEPT NMR spectrum of dye 5
- 47. Figure S45. ¹H NMR spectrum of dye 6
- 48. Figure S46. Expanded ¹H NMR spectrum of dye 6
- 49. Figure S47. ¹³C NMR spectrum of dye 6
- 50. Figure S48. Expanded ¹³C NMR spectrum of dye 6
- 51. Figure S49. COSYNMR spectrum of dye 6
- 52. Figure S50. Expanded COSYNMR spectrum of dye 6
- 53. Figure S51. DEPT NMR spectrum of dye 6
- 54. Figure S52. The simulated absorption spectra of the dyes 1-6 in acetonitrile solvent.
- 55. Figure S53. Absorption and emission spectra of the dyes 1-6 in acetonitrile
- 56. Table S2. Dihedral angle of the dyes
- 57. Table S3. Frontier molecular orbitals of the dyes without pyrene obtained using B3LYP/6-31G* level of theory.

58. **Table S4**. Theoretically calculated HOMO, LUMO and energy gap of the dyes without pyrene moiety

СНО DMF, POCl₃ CH₂ClCH₂Cl, Reflux R-Br NaOH, DMSO, RT Ŕ Ŕ (1 a,b) "CHO (2 a,b) NBS CHCl₃, 0 ⁰C ķ (3 a,b) Η TMS Br NBS PPh₃, CuI,**≡**−TMS K₂CO₃, RT CHCl₃, 0 ⁰C **DIPA**, THF, Reflux (5) (4) (6)

Scheme S1. Synthetic procedure of the starting materials

Table S1 . The calculated maximum wavelength (λ_{max} in nm), oscillator strength (<i>f</i>) and the major
contributions of percentage transitions of the dyes (λ_{max} is the maximum wavelength measured
experimentally).

Dyes	λ _{max} (nm)	λ _{exp} (nm)	Oscillator strength(<i>f</i>)	Major contributions
				HOMO-1 to LUMO (34%),
Dye 1	423	438	1.4787	HOMO to LUMO (44%)
				HOMO-1 to LUMO (34%),
Dye 2	423	438	1.4787	HOMO to LUMO (44%)
				HOMO-1 to LUMO (41%) ,
Dye 3	467	472	1.4563	HOMO to LUMO (43%)
				HOMO-1 to LUMO (40%),
Dye 4	467	473	1.4557	HOMO to LUMO (44%)
				HOMO-1 to LUMO (36%),
Dye 5	426	474	1.1976	HOMO to LUMO (44%)
				HOMO-1 to LUMO (36%),
Dye 6	425	474	1.2149	HOMO to LUMO (44%)

Figure S1. Powder X-ray diffraction of TiO_2

Figure S2. ¹H NMR spectrum of donor 1

Figure S3. Expanded ¹H NMR spectrum of donor 1

Figure S4. ¹³C NMR spectrum of donor 1

Figure S5. Expanded ¹³C NMR spectrum of donor 1

Figure S7. Expanded ¹H NMR spectrum of donor 2

Figure S9. Expanded ¹³C NMR spectrum of donor 2

Figure S11. Expanded of ¹H NMR of dye 1

Figure S13. Expanded of ¹³C NMR spectrum of dye 1

Figure S14. COSY NMR spectrum of dye 1

Figure S15. Expanded of COSY NMR spectrum of dye 1

Figure S16. DEPT NMR spectrum of dye 1

Figure S17. ¹H NMR spectrum of dye 2

Figure S18. Expanded of ¹H NMR spectrum of dye 2

Figure S19. ¹³C NMR spectrum of dye 2

Figure S20. Expanded of ¹³C NMR spectrum of dye 2

Figure S21. COSY NMR spectrum of dye 2

Figure S22. Expanded of COSY NMR spectrum of dye 2

Figure S23. DEPT NMR spectrum of dye 2

Figure S25. Expanded of ¹H NMR spectrum of dye 3

Figure S27. Expanded of ¹³C NMR spectrum of dye 3

Figure S28. COSY NMR spectrum of dye 3

Figure S29. Expanded of COSY NMR spectrum of dye 3

Figure S30. Expanded of COSY NMR spectrum of dye 3

Figure S31. ¹H NMR spectrum of dye 4

Figure S33. ¹³C NMR spectrum of dye 4

Figure S34. Expanded of ¹³C NMR spectrum of dye 4

Figure S35. COSY NMR spectrum of dye 4

Figure S36. Expanded of COSY NMR spectrum of dye 4

Figure S37. DEPT NMR spectrum of dye 4

Figure S39. Expanded ¹H NMR spectrum of dye 5

Figure S41. Expanded of ¹³C NMR spectrum of dye 5

Figure S42. COSY NMR spectrum of dye 5

Figure S43. Expanded of COSY NMR spectrum of dye 5

Figure S45. ¹H NMR spectrum of dye 6

Figure S46. Expanded of ¹H NMR spectrum of dye 6

Figure S47. ¹³C NMR spectrum of dye 6

Figure S48. Expanded of ¹³C NMR spectrum of dye 6

Figure S49. COSY NMR spectrum of dye 6

Figure S50. Expanded of COSY NMR spectrum of dye 6

Figure S51. DEPT NMR spectrum of dye 6

Figure S52. The simulated absorption spectra of the dyes 1-6 (a - f) in acetonitrile solvent.

Figure S53. Absorption and emission spectra of the dyes 1-6 (a – f) in acetonitrile

Table S2. The DFT calculated dihedral angle of the dyes

Table S3. Frontier molecular orbitals of the dyes without pyrene obtained using B3LYP/6-31G* level of theory.

Compound	Optimized structure	номо	LUMO
PTC6CNCOOH	في في في مي بقو في في في بقو في بو بو بو بو بو بو بو بو بو بو بو بو بو		
PTC8CNCOOH	ن بي بي بي بي بي بي بي بي بي بي بي بي بي		
PTC6RhCOOH	აც მც ⁴ ც ამ _{ც დ} ამ ⁴ 3 ³ , მ ყ მ <mark>დ</mark> მ ყ აკ , შ ყ მ დ , 3 ³ ყ; , 3 ³ ყ; , 3 ³ ყ; , 3 ³ ყ; , 3 ³ ყ;		
PTC8RhCOOH	ະພະຊີ ພະຊີ ພະຊີ ພະຊີ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ ເຊັ່ງ		م می دو در برج می دو در دو مدر و در دو ^{مو} د دو ^{مو} د دو ^{مو} د دو ^{مو} د
PTC6CN2	ي هني هي هي ي هني هي هي ي هني هي ي هني ي هني ي ي ي ي ي ي ي ي ي ي		
PTC8CN2	د دود د دود د دود د دود دود دود دود دود	2000 200 2000 2	ي ه ي ه ي ه ي ه ي ه ي ه ي ه ي ه ي ي ي ي

Compound	НОМО	LUMO	Energy gap
	(eV)	(eV)	(eV)
PTC ₆ CNCOOH	-5.44	-2.57	2.87
PTC ₈ CNCOOH	-5.44	-2.57	2.87
PTC ₆ RhCOOH	-5.63	-3.08	2.55
PTC ₈ RhCOOH	-5.41	-2.91	2.50
PTC ₆ CN2	-5.77	-3.17	2.60
PTC ₈ CN2	-5.79	-3.18	2.61

 Table S4. Theoretically calculated HOMO, LUMO and energy gap of the

 dyes without pyrene moiety