Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water solvent

Xin Xiong,^b Dingzhong Yuan,^{a,b} Qinming Wu,^a Fang Chen,^a Xiangju Meng,^{*,a} Ruihua Lv^b, Daniel Dai,^c Stefan Maurer,^c Robert McGuire,^d Mathias Feyen,^d Ulrich Müller,^d Weiping Zhang,^e Toshiyuki Yokoi,^f Xinhe Bao,^g Hermann Gies,^h Bernd Marler,^h Dirk E. De Vos,ⁱ Ute Kolb,^j Ahmad Moini,^k and Feng-Shou Xiao^{*,a}

^a Key Laboratory of Applied Chemistry of Zhejiang Province, Zhejiang University, Hangzhou 310028, China, E-mail: mengxj@zju.edu.cn, fsxiao@zju.edu.cn

^b Eastern China Institute of Technology, Department of Materials Science & Engineering, Nanchang 330013, China.

^c BASF Catalysts (Shanghai) Co., Ltd., 239 Luqiao Road, Jinqiao Export Process Zone Pudong New District, Shanghai, 201206, China

^d BASF SE, GCC/PZ - M311, 67056 Ludwigshafen, Germany

^e State Key Laboratory of Fine Chemicals, Dalian University of Technology, Linggong Road 2, Dalian 116024, China

^f Chemical Resources Laboratory, Tokyo Institute of Technology, 226-8503 Yokohama, Japan ^g State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, 116023 Dalian, China ^h Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, 44780 Bochum, Germany

ⁱ Centre for Surface Chemistry and Catalysis, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium

^j Institut für Physikalische Chemie, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany ^k BASF Corporation, Catalysts LLC, Iselin, NJ 08830, USA

Fig. S1 XRD patterns of the samples prepared with different NaOH/SiO₂ at (A) 0.11, (B) 0.13, (C) 0.18, and (D) 0.22, respectively.

Fig. S2 XRD patterns of the samples prepared with different DMCHA/SiO₂ at (A) 0.11, (B) 0.14, (C) 0.18, and (D) 0.22, respectively.

Fig. S3 XRD patterns of the samples prepared at different temperature at (A) 140 $^{\circ}$ C for 7 days, (B) 150 $^{\circ}$ C for 3 days, and (C) 160 $^{\circ}$ C for 2 days, respectively.

Fig. S4 XRD patterns of CHA-ST synthesized in the absence of CHA seeds at 150 °C for (A) 0, (B) 2, (C) 3, (D) 5, (E) 6, and (F) 7 days, respectively.

Fig. S5 The dependence of crystallinity on the time in the synthesis of CHA-ST without addition of CHA seeds at 150 °C.

Fig. S6 (A) XRD pattern (impurity of MOR labelled with an asterisk) and (B) SEM image of CHA-ST without addition of CHA seeds at 150 °C for 7 days.

Fig. S7 XRD pattern of CHA-ST without addition of CHA seeds at 180 °C for 6 days.

Fig. S8 The dependences of crystallinity on the time of CHA-ST synthesized in the presence of CHA seeds at 180 $^{\circ}$ C.

Fig. S9 Dependence of NO conversion on temperature in NH_3 -SCR over the Cu-CHA (benchmark) zeolite supplied by BASF SE.