Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Pseudocapacitance-tuned High-rate and Long-term Cyclability on Lithium Storage of

NiCo₂S₄ Hexagonal Nanosheets Prepared by a Vapor Transformation

Yun Song, Ziliang Chen, Yanmei Li, Fang Fang, Yong-Ning Zhou, Linfeng Hu*, Dalin Sun*

Department of Materials Science, Fudan University, Shanghai 200433, P. R. China

**Corresponding author:*

E-mail: linfenghu@fudan.edu.cn; dlsun@fudan.edu.cn

Contents:

Table S1-S2

Experimental details Fig. S1-Fig. S5

References (1-8)

Samples	Crystal system	Lattice parameter	Space group
NiCo-hydroxide	hexagonal brucite	a = b = 3.153 Å c = 4.632 Å $\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	P ³ m
NiCo ₂ O ₄	cubic spinel	$a = b = c = 8.114 \text{ Å}$ $\alpha = \beta = \gamma = 90^{\circ}$	Fd ⁻ 3m
NiCo ₂ S ₄	cubic spinel	$a = b = c = 9.418 \text{ Å}$ $\alpha = \beta = \gamma = 90^{\circ}$	Fd ⁻ 3m

Table S1. Structure parameters for NiCo-hydroxide bructite, $NiCo_2O_4$ and $NiCo_2S_4$.

Table S2. Comparison of the cycling performance of $NiCo_2S_4$ -based anode materials

Anode material	Current density	Cycle Number	Reference
NiCo ₂ S ₄ nanosheet on carbon paper	0.1 A/g	50	1
NiCo ₂ S ₄ nanosheet on Ni foam	0.1 A/g	100	2
NiCo ₂ S ₄ nanosheet on Carbon cloth	0.1 A/g	100	3
NiCo ₂ S ₄ nanorod	0.1A/g	100	4
NiCo ₂ S ₄ nanotube on Ni foam	0.2 A/g	50	5
NiCo ₂ S ₄ hollow spheres	0.2 A/g	100	6
NiCo ₂ S ₄ /N-doped graphene/CNT hybrids	0.2 A/g	100	7
$NiCo_2S_4$ nanotube on N-doped Carbon foam cloth	0.5 A/g	100	8
NiCo ₂ S ₄ nanosheets	2 A/g	800	This work

Figure S1. EDX spectrum of incompletely vulcanized $NiCo_2O_4/NiCo_2S_4$ composite after a 1 h sulfidation reaction of the $NiCo_2O_4$ precursor under H_2S/Ar atmosphere.

Figure S2. EDX spectrum of pure $NiCo_2S_4$ nanosheets after a 3 h sulfidation reaction.

Figure S3. (a) Nitrogen adsorption-desorption isotherms and (b) pore size distribution of themesoporous $NiCo_2S_4$ nanosheets.

Figure S4. (a) XPS full survey spectra and high-resolution XPS spectra of (b) Ni 2p, (c) Co 2p, and (d) S 2p of as-obtained $NiCo_2S_4$ nanosheet sample.

Figure S5. Cycling performance of NiCo₂O₄-G electrode at a current density of 0.2 A g⁻¹

Figure S6. Cycling performance of $NiCo_2S_4$ -P electrode at a current density of 0.2 A g⁻¹

Reference

- Yu, D. J.; Yuan, Y. F.; Zhang, D.; Yin, S. M.; Lin, J. X.; Rong, Z.; Yang, J. L.; Chen, Y. B.; Guo, S. Y. Nickel cobalt sulfide Nanotube Array on Nickel Foam as Anode Material for Advanced Lithium Ion Battery. *Electrochim. Acta* 2016, *198*, 280-286.
- (2) High capacity and exceptional cycling stability of ternary metal sulfide nanorods as Li ion battery anodes. *Chem. Commun.* **2015**, *51*, 13350-13353.
- (3) Yang, W.; Chen, L.; Yang, J.; Zhang, X.; Fang, C.; Chen, Z. Huang, L.; Liu, J.; Zhou, Y.;
 Zou. Z. One-Step Growth of 3D CoNi₂S₄ Nanorods and Cross-Linked NiCo₂S₄ Nanosheet
 Arrays on Carbon Paper as Anodes for High-Performance Lithium Ion Batteries. *Chem. Commun.* 2016, *52*, 5258–5261.
- (4) Zou, R.; Zhang, Z.; Yuen, M. F.; Sun, M.; Hu, J.; Lee, C. S.; Zhang, W. Three-Dimensional-Networked NiCo₂S₄ Nanosheet Array/Carbon Cloth Anodes for High-Performance Lithium-Ion Batteries. *NPG Asia Materials* **2015**, *7*, 195.
- (5) Wu, X.; Li, S.; Wang, B.; Liu. J.; Yu. M. NiCo₂S₄ Nanotube Arrays Grown on Flexible Nitrogen-Doped Carbon Foams as Three Dimensional Binder-Free Integrated Anodes for High-Performance Lithium-Ion Batteries. *Phys. Chem. Chem. Phys.* **2016**, *18*, 4505–4512.
- (6) Wang. J. G.; Jin. D.; Zhou. R.; Shen. C.; Xie. K.; Wei. B. One-Step Synthesis of NiCo₂S₄ Ultrathin Nanosheets on Conductive Substrates as Advanced Electrodes for High-Efficient Energy Storage. *Journal of Power Source* **2016**, 306, 100–106.
- (7) Zhang, L.; Zuo, L.; Fan, W.; Liu. T. NiCo₂S₄ Nanosheets Grown on 3D Networks of Nitrogen Doped Graphene/Carbon Nanotubes: Advanced Anode Materials for Lithium-Ion Batteries. *ChemElectroChem* **2016**, *3*, 1 – 9.
- (8) Jin, R.; Liu, D.; Liu, C.; Liu, G. Hierachical NiCo₂S₄ Hollow Spheres as a High Performance Anode for Lithium Ion Batteries. *RSC Adv.* 2015, *5*, 84711 84717.