Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Template Free Synthesis of Hollow Li₂O-Fe₂O₃-Ag Heterostructures for Ultra High Performance Li-ion Batteries

Shilpa and Ashutosh Sharma*

Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India

Fig S1: FE-SEM images of (A) Fe_2O_3 -Ag and (C) Fe_2O_3 structures showing a porous flower-like surface morphology. TEM images of (B) Fe_2O_3 -Ag, and (D) Fe_2O_3 , revealing the formation of a hollow structure.

Fig S2: Elemental mapping images of Li_2O - Fe_2O_3 composite showing a homogenous distribution of Fe_2O_3 .

Fig S3: EDX spectra obtained for (a) Li_2O - Fe_2O_3 -Ag -I, (b) Li_2O - Fe_2O_3 -Ag -II and (c) Li_2O - Fe_2O_3 -Ag -III composites, showing the average Ag weight percentage in the composite to be 18%, 32% and 10%, respectively.

Fig S4: EDX spectra obtained for (a) Fe_2O_3 -Ag and (b) Li_2O - Fe_2O_3 composites, showing the average weight percentage of the constituents.

Fig S5: Nitrogen adsorption-desorption isotherms of Li_2O -Fe₂O₃-Ag, Li_2O -Fe₂O₃, Fe₂O₃-Ag, Fe₂O₃-Ag, Fe₂O₃ and Ag structures.

Fig S6: Magnified CV sections of Li_2O - Fe_2O_3 -Ag and Li_2O - Fe_2O_3 , showing the reduction peak occurring at about 1.6 V in the first cathodic cycle.

Fig S7: Cyclic voltammogram of the Ag electrode at a slow scan rate of 0.1mV/s.

Fig S8: (a) Galvanostatic charge/discharge profile of the Ag electrode at a current density of 100mA/g; (b) Cycling performance of the Ag electrode at a current density of 100mA/g.

Fig S9: Cycling performance of Li_2O - Fe_2O_3 -Ag-II composite (weight ratio of 5.4: 53.2: 41.4) with higher Ag concentration, and Li_2O - Fe_2O_3 -Ag-III composite (weight ratio of 17.6: 69.0: 13.4) with higher Li_2O concentration.