Supplementary Information (SI)

Cubic-shaped WS₂ nanopetals on Prussian blue derived nitrogendoped carbon nanoporous framework for high performance sodiumion batteries

Yew Von Lim,¹ Ye Wang,¹ Dezhi Kong,¹ Lu Guo,¹ Jen It Wong,² L. K. Ang,¹ and Hui Ying Yang^{1†}

^{1.} Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore

² JEOL Asia Pte. Ltd., 2 Corporation Road, #01-12, Singapore 618494, Singapore

[†]Corresponding author. Tel.: +65 6303 6663; Fax: +65 6779 5161. *E-mail address:* yanghuiying@sutd.edu.sg (H. Y. Yang)

Figure S1. EDS results of the derived porous carbon nanocubes, (a) SEM and EDS images stack,(b) EDS spectra, and elemental mappings of (c) carbon, and (d) nitrogen.

Figure S2. SEM images of the pure WS_2 at various magnifications.

Figure S3. EDS spectra of the pure WS_2 .

Figure S4. XPS spectra of, (a) W 4f, and (b) S 2p of the pristine WS_2 samples.

Figure S5. XPS spectra of, (a) N 1s with N1 (pyridinic-N), N2 (pyrrolic-N), and N3 (graphitic-N), and (b) C 1s of the pristine nitrogen-doped carbon nanocubes.

Figure S6. TGA of the as-prepared PB nanocubes measured in air

Figure S7. SEM image of the WS₂@NC electrode materials after 200^{th} cycle lifetime at different magnifications.

Figure S8. EDS mapping results of the WS₂@NC after the 200th cycle lifetime, of (a) SEM and EDS image stack, and elemental mapping results of (b) carbon, (c) nitrogen, (d) sulfur and (e) tungsten.

Table S1. The result of this work and in comparison of the state-of-art synthesis methods of improving performance of TMDs based SIBs electrode materials and their electrochemical performance.

		Electrochemical Properties	
Examples	Synthesis Methods	(mAh g ⁻¹ /cycles/mA g ⁻¹)	Ref.
		320/200/200	
This work	Solvothermal methods	384/100	
WS ₂ /CNT-rGO	Solvothermal methods		
Hierarchical framework	+ freeze drying	252.9/100/200	[1]
WS ₂ nanosheets/		360/100/100	
N-doped carbon	Precipitation methods	200/100/200	[2]
WS ₂ /RGO microspheres	Spray pyrolysis	334/200/200	[3]
		329/500/20	
	deserve served at	218/500/80	
WS ₂ /graphene	Hydrothermal methods	170/500/160	[4]
M/C /aarlaar	Electrostatic spray	210/200/500	151
	Deposition	219/200/500	[5]
WS _x /WO ₃	Electrospinning and		
Thornbush nanofibers	Calcination	600/100/100	[6]
MoS ₂ /graphene paper	Filtration and calcination	218/20/25	[7]
MoS ₂ nanosheets	Liquid phase exfoliation	161/20/100	[8]
MoS ₂ -PEO	Exfoliation restacking	148/70/50	[9]
MoS ₂ in			
Carbon nanofibers	Electrospinning	300/100/1000	[10]
MoS ₂ /carbon composites	Hydrothermal methods	400/300/670	[11]
MoS ₂ vine-like			
Nanofibers	Electrospinning	470/30/100	[12]
MoS ₂ /graphene composites	Hydrothermal methods	312.7/200/100	[13]
MoS ₂ nanosheets	Ultrasonic exfoliation		
(ultrathin)	Methods	251/100/320	[14]
MoS ₂ nanoflowers	Hydrothermal methods	320/600/320	[15]
WS ₂ /carbon	Ball milling and sulfidation	270/100/100	[16]

References

- [1] Y. Wang, D. Kong, W. Shi, B. Liu, G. Joey Sim, Q. Ge and H. Y. Yang, *Adv. Energy Mater.* **2016**, *1601057*, 1.
- [2] X. Wang, J. Huang, J. Li, L. Cao, W. Hao and Z. Xu, ACS Appl. Mater. Interfaces 2016, 8, 23899-23908.
- [3] S. H. Choi and Y. C. Kang, *Nanoscale* **2015**, *7*, 3965-3970.
- [4] D. Su, S. Dou and G. Wang, Chem. Commun. 2014, 50, 4192-4195.
- [5] C. B. Zhu, P. Kopold, W. H. Li, P. A. van Aken, J. Maier and Y. Yu, *J. Mater. Chem. A* 2015, *3*, 20487-20493.
- [6] W.-H. Ryu, H. Wilson, S. Sohn, J. Li, X. Tong, E. Shaulsky, J. Schroers, M. Elimelech and A. D. Taylor, *ACS Nano* 2016, *10*, 3257-3266.
- [7] L. David, R. Bhandavat and G. Singh, ACS Nano 2014, 8, 1759-1770.
- [8] U. K. Sen and S. Mitra, ACS Appl. Mater. Interfaces 2013, 5, 1240-1247.
- [9] Y. Li, Y. Liang, F. C. Robles Hernandez, H. D. Yoo, Q. An and Y. Yao, *Nano Energy* 2015, 15, 453-461.
- [10] C. Zhu, X. Mu, P. A. van Aken, Y. Yu and J. Maier, *Angew. Chemie Int. Ed.* 2014, *53*, 2152-2156.
- [11] J. Wang, C. Luo, T. Gao, A. Langrock, A. C. Mignerey and C. Wang, *Small* 2015, *11*, 473-481.
- [12] W.-H. Ryu, J.-W. Jung, K. Park, S.-J. Kim and I.-D. Kim, Nanoscale 2014, 6, 10975-10981.
- [13] Y.-X. Wang, S.-L. Chou, D. Wexler, H.-K. Liu and S.-X. Dou, *Chem. A Eur. J.* 2014, 20, 9607-9612.
- [14] D. Su, S. Dou and G. Wang, Adv. Energy Mater. 2015, 1401205, 1.

- [15] Z. Hu, L. Wang, K. Zhang, J. Wang, F. Cheng, Z. Tao and J. Chen, *Angew. Chemie Int. Ed.* 2014, 53, 12794-12798.
- [16] J. Li, X. Shi, J. Fang, J. Li, and Z. Zhang, *ChemNanoMat* **2016**, *2*, 997-1002.