Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

# **Supporting Information**

#### Silicon Carboxylate derived Silicon Oxycarbides as Anodes for Lithium Ion Batteries

M. Sohail Tahir<sup>1</sup>, Manuel Weinberger<sup>1,\*</sup>, Prasanth Balasubramanian<sup>2</sup>, Thomas Diemant<sup>3</sup>, R. Jürgen Behm<sup>1,3</sup>, M. Lindén<sup>4</sup> and Margret Wohlfahrt-Mehrens<sup>1,2</sup>

<sup>1</sup>Helmholtz Institute Ulm (HIU), Karlsruhe Insitute of Technology, Helmholtzstraße 11, D-89081 Ulm, Germany, Manuel.Weinberger@kit.edu
<sup>2</sup>Zentrum für Sonnenenergie- und Wasserstoffforschung (ZSW), Helmholtzstraße 8, D-89081 Ulm, Germany
<sup>3</sup>Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany
<sup>4</sup>Institute for Inorganic Chemistry II, Ulm University, Albert-Einstein-Allee 11, D-9073 Ulm, Germany

| Sample   | Initial weight |         | Residual weight after |      | Residual weight after |      |
|----------|----------------|---------|-----------------------|------|-----------------------|------|
|          |                |         | heating to 250°C      |      | carbonisation         |      |
|          | STA [mg]       | CA [mg] | [g]                   | [%]* | [g]                   | [%]* |
| SiCO_0   | 2545           |         | 563                   | 78   | 327                   | 13   |
| SiCO_0   | 2538           |         | 831                   | 67   | 474                   | 19   |
| SiCO_0   | 2487           |         | 574                   | 76   | 369                   | 15   |
| SiCO_1.3 | 2520           | 813     | 1269                  | 62   | 743                   | 29   |
| SiCO_1.3 | 2509           | 817     | 1283                  | 61   | 746                   | 30   |
| SiCO_1.3 | 2505           | 810     | 1312                  | 60   |                       |      |
| SiCO_1.3 | 1240           | 438     | 631                   | 61   |                       |      |
| SiCO_2.5 | 2501           | 1499    | 1610                  | 60   | 793                   | 32   |
| SiCO_2.5 | 2513           | 1515    | 1463                  | 63   | 805                   | 32   |
| SiCO_2.5 | 993            | 611     | 523                   | 67   | 306                   | 31   |
| SiCO_4   | 2516           | 2420    | 1439                  | 71   | 689                   | 27   |
| SiCO_4   | 2504           | 2418    | 1128                  | 77   | 682                   | 27   |
| SiCO_4   | 1095           | 1143    | 510                   | 62   | 313                   | 29   |

# Table S1. Residual weights for several batches

\*The percentual residual weights are related to the sum of STA+CA.

| Figure     | Sample   | Binder | SLMP® content              | Electrode composition  | Active                |
|------------|----------|--------|----------------------------|------------------------|-----------------------|
|            |          |        | $[mg/g_{Active material}]$ | Active                 | material              |
|            |          |        |                            | material/binder/carbon | loading               |
|            |          |        |                            | black                  | [mgcm <sup>-2</sup> ] |
|            |          |        |                            | [wt%/wt%/wt%]          |                       |
| 4a         | SiCO_0   | PVDF   |                            | 80/10/10               | 1.41                  |
|            | SiCO_1.3 | PVDF   |                            | 80/10/10               | 1.72                  |
| 4b         | SiCO_1.3 | PVDF   |                            | 80/10/10               | 1.95                  |
| 4c         | SiCO_1.3 | PVDF   |                            | 80/10/10               | 1.72                  |
|            | SiCO_0   | PVDF   |                            | 80/10/10               | 1.41                  |
|            | Graphite | PVDF   |                            | 80/10/10               | 1.80                  |
| 4d         | SiCO_1.3 | PVDF   |                            | 80/10/10               | 1.72                  |
|            | SiCO_2.5 | PVDF   |                            | 80/10/10               | 2.99                  |
|            | SiCO_4   | PVDF   |                            | 80/10/10               | 1.70                  |
| 5a         | SiCO_1.3 | LiPAA  |                            | 75/15/10               | 1.64                  |
| 5b         | SiCO_1.3 | LiPAA  |                            | 75/15/10               | 1.69                  |
| 5c         | SiCO_1.3 | LiPAA  |                            | 75/15/10               | 1.64                  |
|            | SiCO_1.3 | LiPAA  | 189                        | 75/15/10               | 1.73                  |
|            | SiCO_1.3 | LiPAA  | 348                        | 75/15/10               | 1.72                  |
|            | SiCO_1.3 | LiPAA  | 382                        | 75/15/10               | 1.70                  |
| <b>S</b> 2 | SiCO_1.3 | PVDF   |                            | 80/10/10               | 1.72                  |
|            | SiCO_1.3 | LiPAA  |                            | 75/15/10               | 1.92                  |

# **Table S2.** Active material loadings for all electrochemical measurements

#### Table S3. NMR data for distillates

| Sample               | Chemical shifts [ppm]                               |                                    |                      |  |  |
|----------------------|-----------------------------------------------------|------------------------------------|----------------------|--|--|
|                      | <sup>1</sup> H-NMR                                  | <sup>13</sup> C-NMR                | <sup>29</sup> Si-NMR |  |  |
| Silicon tetraacetate | 2.16 (CH <sub>3</sub> )                             | 22.24 (CH <sub>3</sub> ), 167.81   | 96.36                |  |  |
|                      |                                                     | (COOH)                             |                      |  |  |
| Acetic acid (AA)     | 2.10 (CH <sub>3</sub> )                             | 20.81 (CH <sub>3</sub> ), 175.99   | n.d.                 |  |  |
|                      |                                                     | (COOH)                             |                      |  |  |
| Acetic anhydride     | 2.23 (CH <sub>3</sub> )                             | 22.15 (CH <sub>3</sub> ), 166.38   | n.d.                 |  |  |
| (AN)                 |                                                     | (COOH)                             |                      |  |  |
| SiCO_0               | 2.06 (CH <sub>3</sub> -AA), 2.19 (CH <sub>3</sub> - | 20.62 (CH <sub>3</sub> -AA), 22.11 | n.d.                 |  |  |
|                      | AN)                                                 | (CH <sub>3</sub> -AN), 166.4       |                      |  |  |
|                      |                                                     | (COOH-AN)                          |                      |  |  |
| SiCO_1.3             | 2.09 (CH <sub>3</sub> -AA), 2.21 (CH <sub>3</sub> - | 20.83 (CH <sub>3</sub> -AA), 22.16 | n.d.                 |  |  |
|                      | AN)                                                 | (CH <sub>3</sub> -AN), 166.47      |                      |  |  |
|                      |                                                     | (COOH-AN), 177.88                  |                      |  |  |
|                      |                                                     | (COOH-AA)                          |                      |  |  |

| Sample |          | Carbon       | Molar      |  |
|--------|----------|--------------|------------|--|
|        |          | content from | O/Si ratio |  |
|        |          | XPS analysis |            |  |
|        |          | [wt%]        |            |  |
|        | SiCO_0   | 13.96        | 1.99       |  |
|        | SiCO_1.3 | 29.96        | 2.13       |  |
|        | SiCO_2.5 | 30.07        | 2.19       |  |
|        | SiCO_4   | 23.60        | 2.00       |  |
|        |          |              |            |  |

**Table. S4.** XPS data for unsputtered SiCO samples



Fig. S1. Sorption isotherms for the SiCO samples.



Fig. S2a. XPS survey spectrum for non-sputtered SiCO\_0



Fig. S2b. XPS survey spectrum for non-sputtered SiCO\_1.3



Fig. S2c. XPS survey spectrum for non-sputtered SiCO\_2.5



Fig. S2d. XPS survey spectrum for non-sputtered SiCO\_4



Fig. S2e. XPS survey spectrum for sputtered SiCO\_0



Fig. S2f. XPS survey spectrum for sputtered SiCO\_1.3



Fig. S2g. XPS survey spectrum for sputtered SiCO\_2.5



Fig. S2h. XPS survey spectrum for sputtered SiCO\_4



Fig. S3. Photograph of a prelithiated electrode. SLMP<sup>®</sup> loading: 366 mg/g<sub>Active material</sub>.



Fig. S4. SEM images of SiCO samples. a) SiCO\_0, b) SiCO\_1.3, c) SiCO\_2.5 and d) SiCO\_4.



**Fig. S5.** Comparison of rate capability for SiCO\_1.3 electrodes prepared with PVDF and LiPAA binder.