Supporting Information for

High-Performance Sodium-Ion Batteries and Flexible Sodium-Ion

Capacitors Based on Sb₂X₃ (X=O, S)/Carbon Fiber Cloth

Sainan Liu^a, Zhenyang Cai^a, Jiang Zhou^{*a,b}, Mengnan Zhu^a, Guozhao Fang^a, Anqiang Pan^{*a,b} and Shuquan Liang^{*a,b}

^a School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China

^b Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, Hunan, China

^{*} E-mail address: zhou_jiang@csu.edu.cn, pananqiang@csu.edu.cn, lsq@csu.edu.cn

Figure S1 XRD pattern of carbon fiber cloth.

Figure S2 CV curves of SO/CFC//Na NIBs at various sweep rates from 0.1 to 1.0 mV s⁻¹.

Figure S3 CV curves of SS/CFC//Na NIBs at various sweep rates from 0.1 to 2.0 mV s⁻¹.

Figure S4 Electrochemical performance of CFC anode for NIBs in the voltage range of 0.01-2.00 V (*vs. Na/Na*⁺). (a) CV curves of CFC at sweep rate 0.5 mV S⁻¹; (c) Cycling performance of CFC at 0.5 A g⁻¹.

Samples	Current density / A g ⁻¹	Capacity retention / mA h g ⁻¹	Cycle number	Refere- nce
Sb ₂ O ₃ film	0.5	400	200	[1]
Sb ₂ O ₃ /Sb@graphene	0.1 then 0.2	522/487	275 then continue cycling for another 55 cycles	[2]
Sb/Sb ₂ O ₃ composites	0.66	615	100	[3]
MWNTs@Sb ₂ S ₃ @PPy	0.1	500	80	[4]
Flower-like Sb ₂ S ₃	0.2	642	100	[5]
Rod-like Sb ₂ S ₃	0.1 0.2	699 650	100 100	[6]
Sb ₂ S ₃ -graphite	1 10	656 495	100 100	[7]
This workthe SS/CFC	0.5 2	736 649	650 400	
	5	585	400	
	10	468	400	This
This workthe SO/CFC				work
	0.5	514	500	
	1	475	350	
	2	415	350	
	5	348	350	

Table S1 A comparison of our work with previously reported electrochemical performance of Sb_2O_3 and Sb_2S_3 anodes for NIBs.

Figure S5 SEM images of SO/CFC electrode after (a) 50 cycles, (b) 500 cycles at the current density of 0.5 A g^{-1} .

Figure S6 SEM images of SS/CFC electrode after (a) 50 cycles, (b) 500 cycles at the current density of 0.5 A g^{-1} .

Figure S7 Electrochemical impedance spectroscopy of NIBs employing the SS/CFC and SS powder anodes.

Figure S8 (a) XRD pattern and (b) SEM image of the CFs prepared by the electrospinning method.

Two characteristic peaks located at about 25° and 43° can be assigned to the (002) and (100) planes of graphite and, the morphology possess one-dimensional structure, which is beneficial for improving electronic conductivity and active surface.⁸

Figure S9 (a) CV curve of CFs at sweep rate of 1 mV S⁻¹ in the voltage range of 2.7-4.3 V (*vs.* Na/Na^+); (b) The selected charge-discharge profiles of CFs; (c) Cycling performance of CFs at 0.5 A g⁻¹ and digital photographs of CFs (inset c).

Figure S10 CV curves of the SO/CFC//CFs NIC device at different scan rates between 1 and 20 mV S⁻¹ in the voltage range of 1.5-4.3 V.

Figure S11 CV curves of the SS/CFC//CFs NIC device at different scan rates between 1 and 20 mV S⁻¹ in the voltage range of 1.5-4.3 V.

Figure S12 Electrochemical performance of the flexible SO/CFC//CFs NIC device in the voltage range of 1.5-4.3 V. (a) Charge-discharge profiles at different current densities; (b) Cycle performance for around 3500 cycles at the current density of 1 A g^{-1} .

Figure S13 Schematic of the discharge mechanism of the flexible Sb₂X₃(X=O,S)/CFC//CFs NIC device.

References

- M. Hu, Y. Jiang, W. Sun, H. Wang, C. Jin and M. Yan, ACS Appl. Mater. Inter., 2014, 6, 19449-19455.
- 2 N. Li, S. Liao, Y. Sun, H. W. Song and C. X. Wang, J. Mater. Chem. A, 2015, 3, 35820-5828.
- 3 K. S. Hong, D. H. Nam, S. J. Lim, D. Sohn, T. H. Kim and H. Kwon, *ACS Appl. Mater. Inter.*, 2015, **7**, 17264-17271.
- 4 S. Wang, S. Yuan, Y.-B. Yin, Y.-H. Zhu, X.-B. Zhang and J.-M. Yan, *Part. Part. Syst. Char.*, 2016, **33**, 493-499.
- 5 Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo and X. Zhang, *Nanoscale*, 2015, 7, 3309-3315.
- 6 H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu and X. Ji, ACS Appl. Mater. Inter., 2015, 7, 19362-19369.
- 7 Y. Zhao and A. Manthiram, Chem. Commun., 2015, 51, 113205-13208.
- 8 X. Wang and G. Shen, Nano Energy, 2015, **15**, 104-115.