Electronic Supplementary Information for

Well-defined Co_xCeO_{2+x}-MoS₂ Nanotube Hybrids as Novel

Electrocatalysts for Promising Hydrogen Evolution Reaction

Qin Wang, Zhengqing Liu, Xinyu Zhang, Hongyang Zhao, Chen Luo, Huan Jiao,* Yaping

Du*

Experimental Section

Synthesis of MoS_2 nanotubes: MoS_2 nanotubes were prepared by a solvothermal process. $(NH_4)_2MoS_4$ (1.0 mmol, 99.9%, Aldrich) and CH_3CSNH_2 (2.5 mmol, 99.0%, Aldrich) were dissolved in 30 mL solvent (15 mL absolute ethanol, 99.7%, Sinopharm Chemical Reagent Company and 15 mL hexylamine, 99.0%, TCI Development Company). After continuously stirring for 30 min, the solution was transferred to 50 mL sealed Teflon-lined stainless steel autoclave and heated at 210 °C for 12 h. After the autoclave was cooled down to room temperature, and the powder was centrifuged, washed with absolute ethanol and dried under vacuum at 60 °C overnight.

Synthesis of Co_xCeO_{2+x}-MoS₂ nanocatalysts: 30 mg MoS₂ was dispersed in 30 mL solution (15 mL absolute ethanol + 15 mL hexylamine) by bath sonication for at least 30 min, specifically, the addition sources of Co and Ce were prescribed for 5 mg. According to the mass concentration, the detailed addition of the reagents can be seen in Table S1. (Ce(NO_3)₃·6H₂O, 99.9%, Alfa hexamethylenetetramine (HMTA), 99.8%, Alfa Aesar; Aesar and Co(NO₃)₂·6H₂O, 99.0%, Alfa Aesar). All of the aqueous solutions were slowly added to the corresponding MoS₂ solution. Afterwards, the series of the mixture were vigorously stirred at 90 °C in an oil bath for 6 h. Then the suspensions were transferred to 50 mL sealed Teflon-lined stainless steel autoclave. The reaction was kept at 160 °C for 5 h. A suite of Co_xCeO_{2+x}-MoS₂ nanocatalysts were obtained by centrifuged with absolute ethanol and then dried under vacuum at 60 °C overnight. Finally, the powders were treated in a tube furnace at 300 °C for 60 min with N_2 flowing.

Electrochemical measurements: Electrochemical tests were verified in a three-electrode system at an electrochemical station (CHI 660D). A Pt slice acted as counter electrode, and a saturated calomel electrode (SCE) acted as the reference. The fabrication approach for the working electrodes containing HER catalysts is depicted as following. First, 4 mg of given catalyst sample consists of 500 μ L absolute ethanol, 450 μ L H₂O, and 50 μ L 5% Nafion (5.0%, Aldrich), sonicated for 60 min to form a well-dispersed catalyst ink. Second, 5 µL of the catalyst ink was drop-cast onto a rotating disk electrode made of glassy carbon (3 mm in diameter, loading density ~0.20 mg cm⁻²), which acted as the working electrode. Linear sweep voltammetry starting at o V and finishing at -0.4 V (vs. RHE) with a scan rate of 10 mV/s was operated in 0.5 M H_2SO_4 solution. Chronoamperometry measurements (i-t curves) were measured under a constant overpotential of -0.5 V (vs. SCE) for catalytic stability test and alternate current (AC) impedance measurements were also carried out in 0.5 M H₂SO₄ (98.0%, Sinopharm Chemical Reagent Company) from 1 to 10⁵ Hz with an AC amplitude of 5 mV. The cyclic voltammetry was measured by the identical standard three-electrode setup ranging from 0.97-0.297 V (vs. RHE) at a scan rate of 40, 60, 80, etc. mV s⁻¹.

Characterizations: The structure and composition of the synthesized samples were characterized by tools including X-ray diffraction (XRD), the

XRD patterns with diffraction intensity versus 2θ were recorded in a Shimadzu X-ray diffractometer (Model 6000) using Cu K α radiation. And X-ray photoelectron spectroscope (XPS) were performed on a PHI Quantera SXM analyzer using an Al X-ray source. Morphology analysis was investigated using a JEOL 6700F scanning electron microscope (SEM) at an accelerating voltage of 20 KV. TEM images were acquired from Hitachi HT-7700 transmission electron microscope with an accelerating voltage of 100 kV and HRTEM images were taken with a Philips Tecnai F20 FEG-TEM transmission electron microscope with an accelerating voltage of 200 kV. The specific surface area was verified by the Brunauer-Emmett-Teller (BET) method.

Fig. S1 TEM images of MoS₂ nanotubes.

Fig. S2 (a) The typical nitrogen adsorption-desorption isotherm of MoS_2 nanotubes. (b) Pore size distribution of MoS_2 nanotubes.

Fig. S3 XRD patterns of MoS_2 and Co_xCeO_{2+x} -MoS₂ with different Ce/Co mass ratios.

Fig. S4 (a) XRD patterns of MoS₂ and Ce-doped MoS₂ electrocatalysts. (b) TEM image of Ce-doped MoS₂ electrocatalyst. (c) XRD patterns of MoS₂ and Co-doped MoS₂ electrocatalysts. (d) TEM image of Co-doped MoS₂ electrocatalyst.

Fig. S5 TEM-EDS spectrum of the Ce_{0.3}Co_{0.7}O_x-MoS₂.

Fig. S6 (a) Polarization curves of pure MoS_2 , Co-doped MoS_2 and different Ce/Co mass ratio of Co_xCeO_{2+x} -MoS₂. (b) Polarization curves of pure MoS_2 and Ce-doped MoS_2 . (c) Corresponding Tafel plots obtained from the polarization curves of pure MoS_2 , Co-doped MoS_2 and different Ce/Co mass ratio of Co_xCeO_{2+x} -MoS₂. (d) Polarization curve of Co_xCeO_{2+x} nanocrystals.

Fig. S7 Voltammograms of the (a) pure MoS_2 , (b) Co-doped MoS_2 and (c) $Ce_{0.3}Co_{0.7}O_x$ -MoS₂ electrocatalysts at various scan rates (40-140 mV s⁻¹).

Fig. S8 EIS curves measured in the frequency ranging from 1 Hz to 10^5 Hz at the open circuit voltage with an alternate current amplitude of 5 mV for pure MoS₂, $Ce_{0.3}Co_{0.7}O_x$ -MoS₂ and Co-doped MoS₂.

	0.2 M Ce(NO ₃) ₃ .6H ₂ O (μL)	0.2 M Co(NO ₃) ₂ .6H ₂ O (μL)	0.2 Μ C ₆ H ₁₆ N ₄ (μL)
Ce10% Co90%- Co _x CeO _{2+X} -MoS ₂	5.8	77.3	23.0
Ce20% Co80%- Co _x CeO _{2+X} -MoS ₂	11.5	68.0	46.0
Ce30% Co70%- Co _x CeO _{2+X} -MoS ₂	17.3	60.0	69.0
Ce40% Co60%- Co _x CeO _{2+X} -MoS ₂	23.0	51.5	92.0
Ce50% Co50%- Co _x CeO _{2+X} -MoS ₂	28.8	43.0	115.0
Ce-doped MoS ₂	57.6	0	230.4
Co-doped MoS ₂	0	86.0	5.0

Table. S1 The detailed addition of the reagents for Ce-doped MoS_2 , Co-doped MoS_2 and different mass ratio Co_xCeO_{2+x} - MoS_2 electrocatalyst.