Electronic supplementary information

Cubic quantum dot/hexagonal microsphere $ZnIn_2S_4$ heterophase junction for exceptional visible-light-driven photocatalytic H_2 evolution

Jinge Wang,[‡] Yajie Chen,[‡] Wei Zhou, Guohui Tian,^{*} yuting Xiao, Huiying Fu and Honggang Fu^{*}

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080 P. R. China

Corresponding author: Prof. G. H. Tian and Prof. H. G. Fu, Tel: +86-451-86604330; Fax: +86-451-86661259. *E-mail address: <u>tiangh@hlju.edu.cn</u>; fuhg@vip.sina.com Electronic Supplementary Information (ESI) available: Material characterization and performance test of the some catalysts. See DOI: 10.1039/x0xx00000x ‡ These authors contributed equally to this work.

Fig. S1. SEM images of the H-ZnIn₂S₄ (A,B) and C-ZnIn₂S₄ (C,D) with different magnifications.

Fig. S2. The TEM image (A) of the 1/6J-ZnIn₂S₄ and corresponding size distribution histogram (B) of the cubic quantum dots in the 1/6J-ZnIn₂S₄.

Fig. S3. SEM patterns of the prepared $ZnIn_2S_4$ samples obtained from different solvothermal reaction time: (A) 0.5 h, (B) 1 h, (C) 6 h, and (D) 12 h.

Fig. S4. (A) and (B) are the SEM images of the 1/8J-ZnIn₂S₄ and 1/4J-ZnIn₂S₄, respectively.

Fig. S5. Nitrogen adsorption–desorption isotherms and the pore size distribution plots (inset) of H-ZnIn₂S₄, C-ZnIn₂S₄ and J-ZnIn₂S₄ (1:6).

Table S1 The results of N_2 adsorption–desorption isotherm test of the different samples.

Samples	$S_{BET}(m^2 g^{-1})$	Pore volume (cm ³ g ⁻¹)	Average pore size (nm)
H-ZnIn ₂ S ₄	63.8	0.15	3.2
J-ZnIn ₂ S ₄	75.5	0.17	3.0
C-ZnIn ₂ S ₄	32.3	0.10	2.8

sample	$\tau_1(ns)$	$\tau_2(ns)$	I_1 (%)	<i>I</i> ₂ (%)	Average lifetime (τ, ns)
J-ZnIn ₂ S ₄	2.19	9.78	27.97	72.03	9.35
H-ZnIn ₂ S ₄	1.68	8.16	32.68	67.32	8.47
C-ZnIn ₂ S ₄	1.55	7.65	33.55	66.45	5.48

Table S2 Summary of the photoluminescence decay time (τ) and their relative intensities of the different samples.

The average lifetime was calculated using equation: $<\tau >= (I_1\tau_1^2 + I_2\tau_2^2)/(I_1\tau_1 + I_2\tau_2)$

Fig. S6. Room-temperature electron spin resonance (ESR) lines of H-ZnIn₂S₄ (a) and the control sample after further hydrothermal process under pure water of H-ZnIn₂S₄ (b).

Fig. S7. (A)-(E) are the water contact angle photographs of C-ZnIn₂S₄, H-ZnIn₂S₄, 1/8J-ZnIn₂S₄, 1/6J-ZnIn₂S₄, and 1/4J-ZnIn₂S₄ under dark, respectively.

C	R _S	CPE1	R_1	CPE2	R _{ct}
Samples	$(\Omega \ cm^2)$	(F cm ⁻²)	$(\Omega \ cm^2)$	(F cm ⁻²)	$(\Omega \ cm^2)$
J-ZnIn ₂ S ₄	58.03	7.565×10-4	18.86	5.065×10-4	150. 5
H-ZnIn ₂ S ₄	59.35	2.967×10 ⁻³	20.55	6.416×10 ⁻⁴	241.2
C-ZnIn ₂ S ₄	59.98	4.856×10-3	22.73	6.815×10 ⁻⁴	320.2

Table S3 Values of the parameters resulted from fitting the impedance spectra of thedifferent samples using the equivalent circuit Figure 5C.

Fig. S8. Comparison of the photocatalytic H_2 evolution rate of 1/6J-ZnIn₂S₄ and the P-ZnIn₂S₄ (physically mixed C-ZnIn₂S₄ and H-ZnIn₂S₄) (A), different reaction times (B).

Fig. S9. Comparison of the photocatalytic H_2 evolution rate of 1/6J- $ZnIn_2S_4$ and the crushed 1/6J- $ZnIn_2S_4$ (C-1/6J- $ZnIn_2S_4$) (A), different reaction times (B).

Fig. S10. Photocatalytic H_2 evolution of the 1/6J-ZnIn₂S₄ samples with different amounts.

Fig. S11. The H₂ evolution rates of the different samples plotted against wavelength of monochromatic light.

Table S4 The apparent quantum efficiency (AQE) of the different samples under different illumination wavelength.

Sampla	Apparent Quantum Efficiency (AQE)				
Sampie	420 nm	470 nm	520 nm	600 nm	
J-ZnIn ₂ S ₄	18.67%	8.20%	2.12%	0.91%	
H-ZnIn ₂ S ₄	6.43%	2.01%	0.69%	0.15%	
C-ZnIn ₂ S ₄	3.18%	1.17%	0.12%	0.08%	

Table S5 The perfromance comparision of the catalysts from the different references.

Catalyst	Apparent Quantum Efficiency (AQE) at 420 nm	Photocatalytic H ₂ Evolution Rate (µmol h ⁻¹)	Reference
J-ZnIn ₂ S ₄	18.67%	114.2	This Work
La-ZnIn ₂ S ₄	8.83%	116.68	(1)
$ZnIn_2S_4$	4.11%	49.78	(2)
RGO-ZnIn ₂ S ₄		81.6	(3)
ZnIn ₂ S ₄ -CTAB	11.9%	122.2	(4)
$MoS_2/ZnIn_2S_4$		47.71	(5)
$Ag/ZnIn_2S_4/TiO_2$	0.18%	33.1	(6)
$ZnIn_2S_4/g$ - C_3N_4	0.28%	14.1	(7)

References

(1) F. Tian, R. S. Zhu, K. L Song, O. Y. Feng and G. Cao, *Int J Hydrogen Energy* 2015, **40**, 2141-2148.

- (2) F. Tian, R. S. Zhu, K. L. Song, M. L. Niu, O. Y. Feng and G. Cao, *Mater. Res. Bull* 2015, **70**, 645–650.
- (3) J. Zhou, G. H. Tian, Y. J. Chen, X. Y. Meng, Y. H. Shi, X. R. Cao, K. Pan and H.
- G. Fu, Chem. Commun. 2013, 49, 2237-2239.
- (4) S. H. Shen, L. Zhao and L. J. Guo, Mater. Res. Bull 2009, 44, 100-105.
- (5) W. Y. Lim, M. H. Hong and G. W. Ho, Dalton Trans. 2016, 45, 552-560.
- (6) Z. Y. Zhang, Y. Z Huang, K. C. Liu, L. J. Guo, Q. Yuan and B. Dong, *Adv. Mater.* 2015, **27**, 5906-5914.
- (7) Z,Y. Zhang, K. C. Liu, Z. Q. Feng, Y. N. Bao and B. Dong, *Sci. Reports*. 2016, *6*, 19221-19230.

Fig. S12. SEM image (A) and XRD pattern of the J-ZnIn $_2S_4$ after photocatalytic H $_2$

evolution reaction.