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Figure S1. Time-profiled changes in currents during electrochemical deposition of Cu(II) and 
Al(III) onto FTO in water at 0.31 VSCE and DMSO at 1.91 VSCE for 2 h. 

Figure S2. (a) XPS and (b) EDX analyses of as-synthesized CuAlO2 (DMSO/Air) sample.
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Figure S3. The XPS O1s spectra of CuAlO2 sample.

Figure S4. EDX elemental mappings for top views (a–c) and cross-sectional views (d–f) of 
CuAlO2 (i.e., DMSO/Air sample).
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Figure S5. Time-profiled changes in photocurrents during photoelectrochemical H2 production 
using CuAlO2 electrodes at +0.3 VRHE in aqueous KOH solutions (1 M) without and with sulfide, 
sulfite, or sulfide/sulfite (each 0.5 M). 
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Figure S6. Comparison of samples synthesized under different conditions for (a) time changes in 
photocurrents at +0.3 VRHE in aqueous KOH solution (1 M) containing sulfide (0.5 M) and 
sulfite (0.5 M), (b) H2 production at +0.3 VRHE, and (c) Faradaic efficiencies for H2 production at 
+0.3 VRHE. 



Figure S7. Comparison of light-chopped LSVs of CuAlO2 under electrolyte-side and substrate-
side irradiations in aqueous KOH solution (1 M) purged with N2. Under the electrolyte-side 
irradiation, holes must travel a longer distance; under the substrate-side irradiation, electrons 
travel a longer distance. Considering the transmittance of the substrate (FTO), the incident light 
intensity decreases by ~20% under the substrate-side irradiation. See Figure S8 for a comparison 
of the incident light intensities under the two irradiation conditions. 
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Figure S8. Comparison of normalized light intensities of AM1.5 light in the absence and 
presence of FTO substrate in front of silicon detector.
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Figure S9. Time-profiled changes in photocurrents during photoelectrochemical H2 production 
using CuAlO2 at +0.3 VRHE and Au/CuAlO2 at +0.3 VRHE and +0.55 VRHE in aqueous KOH 
solutions (1 M) purged with N2. 
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Figure S10. Photoluminescence (PL) spectra of CuAlO2 and Au/CuAlO2 films excited at  = 379 
nm. 



Figure S11. Time-resolved photoluminescence emission (400–500 nm) decay spectra of CuAlO2 
and Au/CuAlO2. Upon excitation at  = 379 nm, the emission decays exponentially, with the 
decay constants estimated by fitting the decay curves to the following equation: I(t) = 
A1exp(t/1) + A2exp(-t/2) + A3exp(t/3), where I(t) is the time-dependent photoluminescence 
intensity, A is the normalized amplitude of the corresponding lifetime component, and  is the 
photoluminescence lifetime.



Figure S12. Time-resolved photoluminescence emission decay spectra of FTO only (w/o CuAlO2) 
and CuAlO2 (w/ CuAlO2). The decay profiles were different each other, suggesting that the 
shortest decay lifetime component (i.e., 1 in Figure S11) is meaningful. Then, we subtracted the 
IRF from the decay profiles of CuAlO2 and Au/CuAlO2 samples and re-fitted the obtained decay 
profiles. The decay lifetimes (2) of CuAlO2 and Au/CuAlO2 were estimated to be 1.706 and 
1.513 ns, respectively. Although 2 was much larger than 1, the Au underlayer clearly decreased 
the decay lifetime. This decrease in  should have resulted from the charge transfer facilitated by 
the Au layer, leading to a reduction in the charge recombination.


