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Figure S1. Time-profiled changes in currents during electrochemical deposition of Cu(Il) and
AI(III) onto FTO in water at —0.31 Vgcg and DMSO at —1.91 Vg for 2 h.
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Figure S2. (a) XPS and (b) EDX analyses of as-synthesized CuAlO, (DMSO/Air) sample.
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Figure S3. The XPS Ols spectra of CuAlO, sample.
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Figure S4. EDX elemental mappings for top views (a—c) and cross-sectional views (d—f) of
CuAlO;, (i.e., DMSO/Air sample).
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Figure S5. Time-profiled changes in photocurrents during photoelectrochemical H, production
using CuAlQ; electrodes at +0.3 Vgyg in aqueous KOH solutions (1 M) without and with sulfide,

sulfite, or sulfide/sulfite (each 0.5 M).
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Figure S6. Comparison of samples synthesized under different conditions for (a) time changes in
photocurrents at +0.3 Vyyg in aqueous KOH solution (I M) containing sulfide (0.5 M) and
sulfite (0.5 M), (b) H, production at +0.3 Vgyg, and (c¢) Faradaic efficiencies for H, production at
+0.3 VRyE.
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Figure S7. Comparison of light-chopped LSVs of CuAlO, under electrolyte-side and substrate-
side irradiations in aqueous KOH solution (1 M) purged with N,. Under the electrolyte-side
irradiation, holes must travel a longer distance; under the substrate-side irradiation, electrons
travel a longer distance. Considering the transmittance of the substrate (FTO), the incident light
intensity decreases by ~20% under the substrate-side irradiation. See Figure S8 for a comparison
of the incident light intensities under the two irradiation conditions.
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Figure S8. Comparison of normalized light intensities of AMI1.5 light in the absence and
presence of FTO substrate in front of silicon detector.
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Figure S9. Time-profiled changes in photocurrents during photoelectrochemical H, production
using CuAlO,; at +0.3 Vgyg and Au/CuAlO; at +0.3 Vryg and +0.55 Vgyge in aqueous KOH
solutions (1 M) purged with N,.
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Figure S10. Photoluminescence (PL) spectra of CuAlO, and Au/CuAlO; films excited at A = 379
nm.
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Figure S11. Time-resolved photoluminescence emission (400-500 nm) decay spectra of CuAlO,
and Au/CuAlO,. Upon excitation at A = 379 nm, the emission decays exponentially, with the
decay constants estimated by fitting the decay curves to the following equation: I(t) =
Ajexp(—t/ty) + Azexp(-t/ty) + Asexp(—t/t3), where I(t) is the time-dependent photoluminescence
intensity, A is the normalized amplitude of the corresponding lifetime component, and 7 is the
photoluminescence lifetime.
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Figure S12. Time-resolved photoluminescence emission decay spectra of FTO only (w/o CuAlQO,)
and CuAlO, (w/ CuAlO,). The decay profiles were different each other, suggesting that the
shortest decay lifetime component (i.e., t; in Figure S11) is meaningful. Then, we subtracted the
IRF from the decay profiles of CuAlO, and Au/CuAlO, samples and re-fitted the obtained decay
profiles. The decay lifetimes (t;) of CuAlO, and Au/CuAlO, were estimated to be 1.706 and
1.513 ns, respectively. Although 1, was much larger than t;, the Au underlayer clearly decreased
the decay lifetime. This decrease in T should have resulted from the charge transfer facilitated by
the Au layer, leading to a reduction in the charge recombination.



