Supporting Information

Na₃V₂(PO₄)₃/C synthesized by facile solid-phase method assisted with

agarose as high-performance cathode for sodium-ion battery battery

Pingyuan Feng,^a Wei Wang,^{a,*} Kangli Wang,^b Shijie Cheng^b and Kai Jiang^{a,b,*}

- ^a State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China 430074
- ^b State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China 430074
- * E-mail: kjiang@hust.edu.cn (K. Jiang); wei_wang@hust.edu.cn (W. Wang).

Fig. S1 Nitrogen adsorption-desorption isotherm of the NVP/C composite.

Fig. S2 Long cycling stability of NVP/C at the lower rate of 5 C.

Fig. S3 Cycle performance of NVP/C at 40 C.

Fig. S4 The (a) XRD and (b) SEM characterization of the obtained SC anode.

Fig. S5 Electrochemical performance of the as-prepared SC anode within the range of 0.01-3.0 V at 200mA g⁻¹: a) charge/discharge curves of the 1st, 5th and 10th cycles, and b) cycle stability.