Electronic Supplementary Information

Combining catalysis and hydrogen storage in direct borohydride fuel cells:

towards more efficient energy utilization

Jun Chen, Jun Fu, Kai Fu, Rui Xiao, Yong Wu, Xinyao Zheng, Zhiliang Liu, Jie Zheng* and Xingguo Li*

Potential dependent H chemical potential of different H species:

Derivation and discussions

1. Definition and general expression for the H chemical potential

The energy of H in hydrogen storage materials can be described by the equilibrium H₂ partial pressure, or equivalently, the chemical potential of H₂ in the equilibrium state. The chemical potential of H₂ in the equilibrium state (H chemical potential, μ_H) can be extended as a general descriptor to measure the energy of H in H species, including solids, liquids and solution species. The H species for investigation is in the standard state, i.e. pure substance for solids or liquids and concentration of 1 M for solution species. For H₂ in the standard potential, i.e. partial pressure is p^o (1 bar), $\mu_H = 0$.

We will calculate the H chemical potential μ_H of BH₄⁻, YH_{2+x} and H₂O in the NaBH₄-YH_{2+x}-H₂O system, corresponding to the hydridic, atomic and protonic H. The interconversion reactions of the H species are shown in Figure S1 (same as Figure 4a in the main text). Here G1 is given by the average of oxidative dissociation of the four B-H bonds in BH₄⁻.

Figure S1. Interconversion reactions of the H species in the NaBH₄-YH_{2+x}-H₂O system

For calculation, the first step is to correlate the H species with H_2 . This can be readily done by coupling the three H_{ad} generation reactions (G1, G2 and G3) with the H_2 formation reaction (A1):

 $BH_{4^{-}}(G1+A1): 1/4 BH_{4^{-}} + OH^{-} \rightarrow 1/4 BO_{2^{-}} + 1/2 H_2O + 1/2 H_2 + e^{-}$ (S1) $H_2O (G2 + A1): H_2O + e^{-} \rightarrow OH^{-} + 1/2 H_2$ (S2) $YH_{2+x} (G3+A1): 1/x YH_{2+x} \rightarrow 1/x YH_2 + 1/2 H_2$ (S3)

Note that the coefficient of the reactions are adjusted to given 1 mol H atom in H_2 , i.e. 1/2 mol H_2 .

The equilibrium chemical potential of H₂ is related to the equilibrium H₂ partial pressure $p_{H_2}^{eq}$:

$$\mu_H = 1/2 RT ln \left(p_{H_2}^{eq} / p^o \right) \tag{S4}$$

Here $p^o = 1$ bar is the pressure at the standard state, R = 8.314 J·mol⁻¹K⁻¹ is the ideal gas constant and T is the temperature in Kelvin.

When all the solution species is in the standard state, i.e. concentration is 1 M, the Gibbs free energy change of the reactions (S1, S2 and S3) ΔG_i (i = 1-3) is only affected by the H₂ partial pressure, which is given by: $\Delta G_i = \Delta G_i^0 + 1/2 BT ln (n^{eq}_i / n^0)$

$$\Delta \sigma_i = \Delta \sigma_i + 1/2 \operatorname{Krm}(\rho_{H_2}/p) \tag{S5}$$

Here ΔG_i^o is the standard Gibbs free energy change of the corresponding reaction.

 ΔG_i can also be given by the electrode potential φ through:

 $\Delta G_i = -nF\varphi$

Here F=96480 C·mol⁻¹ is the Faraday constant, n is the number of electrons required to generate 1 mol H in H₂ (or equivalently 0.5 mol H₂).

(S6)

Combining S4, S5 and S6, we can obtain the general expression for μ_{H} :

$$\mu_H = -\Delta G_i^o - nF\varphi \tag{S7}$$

The possible values for *n* to generate 1 mol H is +1, -1 or 0. If H₂ is generated through a reductive reaction (i.e. water reduction, Eq. S2), then n = 1. If H₂ is generated through an oxidative reaction (i.e., BOR, Eq. S1), then n = -1. If H₂ is generated through a non-redox reaction (i.e. dehydrogenation of YH_{2+x}, Eq. S3), then n = 0. For redox reactions, Eq. S7 is equivalent to the Nernst's Equation. Using the above assignment of the *n* value, the non-redox reaction can also be included.

Therefore, μ_H can be calculated from the standard Gibbs free energy change ΔG_i^o (*i* = 1-3).

2. μ_H in different **H** species

2.1 μ_H in H₂O

The corresponding H_2 generation reaction is Eq.S2, which is the H_2 evolution reaction from H_2O in alkaline solution. The standard potential of the H_2O/H_2 redox couple is the reversible hydrogen electrode potential (RHE, - 0.83 V vs. SHE) in 1 M OH⁻. Thus,

$$\Delta G_2^o = -F\varphi_{RHE}^{\ o} \tag{S8}$$

Substitute Eq. S8 into Eq. S7 and note here n = 1, we obtain:

$$\mu_H(H_2 0) = -\Delta G_2^o - nF\varphi = F\varphi_{RHE}^o - F\varphi$$
(S9)

Using eV as the unit leads to a simpler expression:

$$\mu_H(H_2O) = -\varphi + \varphi_{RHE}^{\ o} \tag{S9a}$$

2.2 μ_H in NaBH₄

The corresponding H₂ generation reaction from BH₄⁻ is Eq.S1. To calculate ΔG_1^o , we note that the combination 4(S2 – S1) gives the borohydride oxidation reaction (BOR, Eq. S10):

$$BO_2^- + 6H_2O + 8e^- \rightarrow BH_4^- + 8OH^-$$
(S10)

Thus, the ΔG^o of S10 is given by:

$$\Delta G_{10}^{\ o} = 4\Delta G_2^{\ o} - 4\Delta G_1^{\ o} = -8F\varphi_{BOR}^{\ o}$$
(S11)

Here φ_{BOR}^{o} = -1.24 V vs SHE is the standard potential for the BO₂⁻/BH₄⁻ redox couple.

Combine Eq. S8, S11 into Eq. S7 and note here n = -1, μ_H in NaBH₄ is given by Eq. S12: $\mu_H(NaBH_4) = -\Delta G_1^o + F\varphi = -(\Delta G_2^o + 2F\varphi_{BOR}^o) + F\varphi$

$$= F\varphi_{RHE}^{0} - 2F\varphi_{BOR}^{0} + F\varphi \tag{S12}$$

Using eV as the unit leads to a simpler expression:

$$\mu_H(NaBH_4) = \varphi + \varphi_{RHE}^0 - 2\varphi_{BOR}^0$$
(S12a)

2.3 μ_H in YH_{2+x}

The corresponding H₂ generation reaction is Eq. S3. The ΔG^o of S3 is given by

$$\Delta G_3^o = \Delta G_{deH}^o \tag{S13}$$

Here ΔG_{deH}^{o} is the Gibbs free energy change of the standard dehydrogenation process. Therefore, μ_H in YH_{2+x} is simply given by (here n = 0):

$$\mu_H(YH_{2+x}) = -\Delta G_{deH}^{o}$$
(S14)

For YH_{2+x} to YH₂, the dehydrogenation enthalpy at 298 K ΔG_{deH}^{o} at 298 K is 31 kJ·(mol H)⁻¹, obtained from the van't Hoff isotherm¹. The entropy of H₂ is 130.8 J mol⁻¹ K⁻¹. ² Therefore, ΔG_{deH}^{o} at 298 K is calculated to be 11.5 kJ·(mol H)⁻¹, or 0.12 eV.

3. Summary and plot

The H chemical potential (in eV) of different H containing species shows very simple linear dependence on the electrode potential φ , which is summarized as:

$$\mu_{H}(H_{2}O) = -\varphi + \varphi_{RHE}^{o}$$

$$\mu_{H}(NaBH_{4}) = \varphi + \varphi_{RHE}^{o} - 2\varphi_{BOR}^{o}$$
(S9a)
(S12a)

$$\mu_H(YH_{2+x}) = \Delta G_5^o - \Delta G_3^o = -\Delta G_{deH}^o$$
(S14)

Using $\varphi_{RHE} = -0.83 \text{ eV}$, $\varphi_{BOR}^{o} = -1.24 \text{ eV}$ and $-\Delta G_{deH}^{o} = 0.12 \text{ eV}$, the $\mu_{H} \sim \varphi$ plot is shown in Figure S2 (similar to Figure 5 in the main text). At a given electrode potential, lower μ_{H} species is more stable. We can check the correctness of the above equations by comparing them with physical definition. Calculated from Eq. S9a and Eq. 12a, the intercepts of the BH₄-/H₂O line gives $\varphi = \varphi_{BOR}^{o}$, indicating BH₄- can only be oxidized into H₂O above that potential, which is in perfect agreement with the physical definition of φ_{BOR}^{o} .

Figure S2 The potential dependent H chemical potential of different H containing species. The solid lines are corresponding to the standard condition, i.e. the concentration of all the solution species is 1 M. The dashed lines are results after correction for the non-standard concentration: $[OH^-] = 2 \text{ M}$, $[BO_2^-]/[BH_4^-]=10^{-3}$.

4. Correction for the non-standard concentration

Eq. S9a and Eq. S12a are derived for the standard condition, i.e. the concentration of BH_4^- , BO_2^- and OH^- is 1 M. However, the NaBH₄ and NaOH concentration are 0.05 M and 2 M in the experiment. The concentration of BO_2^- is unknown. The electrode potential for reaction S2 and S10 should be corrected for the non-standard concentration. This can be done by applying the Nernst equation for reaction S2 and S10.

$$\varphi_{RHE} = \varphi_{RHE}^{o} + 0.0592 \log \frac{1}{[OH^{-}]}$$
(S15)
$$\varphi_{BOR} = \varphi_{BOR}^{o} + \frac{0.0592}{8} \log \frac{[BO_{2}^{-}]}{[BH_{4}^{-}][OH^{-}]^{8}}$$
(S16)

The experimental concentration for OH- is 2 M. $[BO_2^-]/[BH_4^-]$ is unknown but 10^{-3} is a reasonable value. Substitute into the above equations give:

 $\varphi_{RHE} = \varphi_{RHE}^{o} - 0.018 \tag{S17}$

$$\varphi_{BOR} = \varphi_{BOR}^{o} - 0.040 \tag{S18}$$

Therefore, the φ_{RHE}^{o} and φ_{BOR}^{o} in Eq. S9a and S12a should be replaced by φ_{RHE} and φ_{BOR} for non-standard concentration. Thus, the non-standard concentration only cause very slight shift of μ_H , which is shown by the dashed lines in Figure S2. The concentration effect on μ_H is rather insignificant.

References

- 1. R. Griessen, J. N. Huiberts, M. Kremers, A. T. M. van Gogh, N. J. Koeman, J. P. Dekker and P. H. L. Notten, *Journal of Alloys and Compounds*, 1997, **253–254**, 44-50.
- 2. L. Schlapbach and A. Zuttel, *Nature*, 2001, **414**, 353-358.