Supporting Information for

Metal-organic frameworks templated two dimensional hybrid bimetallic metal oxides with enhanced lithium/sodium storage capability

Guozhao Fang^{*a*}, Jiang Zhou ^{*ab**} Yangsheng Cai^{*a*}, Sainan Liu^{*a*}, Xiaoping Tan^{*ab*}, Anqiang Pan^{*ab**}, Shuquan Liang^{*ab**}

^a School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, China

^b Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, Hunan, China

^{*} Corresponding author: Tel.: +86 0731-88836069. Fax: +86 0731-88876692. E-mail address: zhou_jiang@csu.edu.cn, pananqiang@csu.edu.cn, lsq@csu.edu.cn.

Figures and Captions

Increase of Zinc content in samples

Figure S1 Photograph of Co-MOFs, CoZn(n)-MOFs, and Zn-MOFs nanosheets prepared by designing different Co:Zn molar ratios. The Co:Zn molar ratios of CoZn(n)-MOFs nanosheets are detected by ICP-OES analysis, which are summarized in **Table S1**.

Sample	Element	Content (wt.%)	Molar ratio (Co:Zn)
CoZn(2:1)-	Zn	7.21	2.308:1.103
MOFs	Co	13.6	
CoZn(1:1)- MOFs	Zn Co	$\frac{10.7}{10.1}$	1.714:1.637
CoZn(1:2)-	Zn	<u>15.0</u>	1.179:2.294
MOFs	Co	6.95	

 Table S1 ICP-OES analysis results of different bimetallic CoZn-MOFs nanosheets.

Figure S2 (a) PXRD patterns and (b) FT-IR spectrums of Co-MOFs, CoZn(n)-MOFs, and Zn-MOFs nanosheets; TEM images of (b) Co-MOFs, (c) Zn-MOFs, and (d) CoZn(1:1)-MOFs nanosheets.

We can see from **Figure S2b** that all the FT-IR spectrums display the similar shape and show main vibration modes between 400 and 2000 cm⁻¹, which also correspond well to our previous study.¹ The results indicate that all our obtained samples possess similar crystalline frameworks. For the typical vibration modes, the peak at 424 cm⁻¹ is ascribed to Zn-N or Co-N stretching. The peaks around 1142 and 1302 cm⁻¹ belong to the C-H vibrations, while the peak at 1566 cm⁻¹ corresponds to C=N vibration.

Figure S3 SEM images of (a, f) Co-MOFs nanosheets; (b, g) CoZn(2:1)-MOFs nanosheets; (c, h) CoZn(1:1)-MOFs nanosheets; (d, i) CoZn(1:2)-MOFs nanosheets; and (e, j) Zn-MOFs nanosheets.

As shown in **Figure S3**, all the as-obtained MOFs exhibit leaf-like nanosheet morphology with a smooth surface. For Co-MOFs nanosheet, it shows an olive-styled shape (**Figure S3a, f**), while the Zn-MOFs nanosheet exhibits elliptical shape (**Figure S3e, j**). The morphology of CoZn(n)-MOFs (n=2:1, 1:1, 1:2) nanosheets are intermediate to those of Co-MOFs and Zn-MOFs nanosheets, which demonstrate an evolution of morphologies from olive-styled shape to elliptical shape with the Co:Zn molar ratios decrease (the total amount of Co and Zn ions is two molars).

Figure S4 Elemental mappings of single CoZn(1:1)-MOFs nanosheet. (a) All elements, (b) Co, (c) Zn, (d) C, (e) N, and (f) O; (g) EDX pattern and content analysis of Zn and Co elements.

Figure S5 Elemental mappings of single Co-MOFs nanosheet. (a) All elements, (b) Co, (c) Zn, (d) C, (e) N, and (f) O; (g) EDX pattern and content analysis of Zn and Co elements.

Figure S6 Elemental mappings of single Zn-MOFs nanosheet. (a) All elements, (b) Co, (c) Zn, (d) C, (e) N, and (f) O; (g) EDX pattern and content analysis of Zn and Co elements.

Sample	Element	Content (wt.%)	Content (at.%)	Molar ratio (Co:Zn)
	Zn	1.3911319	1.2554920	1.0
CO-MOFS	Co	98.6088680	98.7445079	~ 1.0
$C_0 Z_n(1,1)$	Zn	53.2570750	50.6625378	1.1
MOFs	Co	46.7429249	49.3374621	~ 1.1
Zn MOEs	Zn	99.4839499	99.4277343	0.1
	Со	0.5160500	0.5722656	~ 0.1

Table S2 EDX analysis of Co-MOFs, CoZn(1:1)-MOFs, and Zn-MOFs nanosheets.

EDX analysis results are summarized in **Table S2**. The molar ratios of Zn²⁺/Co²⁺ for Co-MOFs, CoZn(1:1)-MOFs, and Zn-MOFs nanosheets are about 1:0, 1:1, and 0:1, respectively, which is consistent with ICP-OES result. The elemental mapping and EDX analysis demonstrate the absence of Zn element for Co-MOFs nanosheet (**Figure S5**) and Co element for Zn-MOFs nanosheet (**Figure S6**), corresponding to the initial experimental design. The copper element detected in **Figure S4g**, **S5g and S6g** is derived from the lacey support film.

Figure S7 TG curves of as-synthesized Co-MOFs, CoZn(2:1)-MOFs, CoZn(1:1)-MOFs, CoZn(1:2)-MOFs and Zn-MOFs nanosheets recorded under flowing air with a heating rate of 10 °C/min.

Figure S8 PXRD patterns of CoZn-O2 obtained at 400 °C and 700 °C kept for 2 minutes with a heating rate of 10 °C/min.

To determine the thermal decomposition temperature of the as-synthesized MOFs nanosheets, the thermogravimetry (TG) measurements were conducted (Figure S7). Taking CoZn(1:1)-MOFs nanosheets as an example, the mass loss of 2.25% before 213 °C was due to the removal of absorbed water molecules. In the second step of TG curves between 213 °C and 335 °C, the mass loss of 16.25% may be ascribed to the removal of the unreacted and the weakly linked ligand (2-methylimidazole) and the CoZn(1:1)-MOFs became to decompose.² After then, it became to oxidize to Co_3O_4/ZnO and a further significant weight loss of 50.39% at 585 °C indicated that CoZn(1:1)-MOFs was totally transferred into Co₃O₄/ZnO. To further confirm this process, the PXRD patterns of CoZn-O2 obtained at 400 °C and 700 °C kept for 2 minutes with a heating rate of 10 °C/min were conducted (Figure **S8**). We can see that the two patterns can be well indexed to cubic Co_3O_4 phase [JCPDS Card No. 74-2120] and hexagonal ZnO phase [JCPDS Card No. 89-1397], demonstrating Co₃O₄/ZnO appeared in the beginning of the third step of TG curves. However, in this work, the heating rate was 0.5 °C/min and kept at 400 °C for 30 min. There was enough time to decompose the ligands in MOFs nanosheets, which could be confirmed by the XPS spectra of Co₃O₄, CoZn-O1, CoZn-O2, CoZn-O3 and ZnO nanosheets obtained at 400 °C with a heating rate of 0.5 °C/min (Figure 3c). These spectra showed absent BE peak of nitrogen element (~400 eV), which is an imperative composed element of 2methylimidazole.

Figure S9 Rietveld refined XRD patterns of (a) CoZn-O1, (b) CoZn-O2, and (c) CoZn-O3.

Table 53 XRD refinement parameters of CoZn-O1, CoZn-O2, and CoZn-O3.					
Sample	Phase	Lattice parameters	Unit-cell volume	Content (wt.%)	R
CoZn-O1	Co ₃ O ₄	a=b=c=8.09547 Å, $\alpha=\beta=\gamma=90^{\circ}$	530.5 (Å ³)	79.8	0.46%
	ZnO	a=b=3.25213 Å, $c=5.19913$ Å, $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	47.6 (Å ³)	20.2	9.40%
CoZn-O2	Co ₃ O ₄	a=b=c=8.08784 Å, $\alpha=\beta=\gamma=90^{\circ}$	529.1 (Å ³)	60.6	11 02%
	ZnO	<i>a</i> = <i>b</i> = 3.25080 Å, <i>c</i> = 5.19995 Å, <i>α</i> = <i>β</i> =90°, <i>γ</i> =120°	47.6 (Å ³)	39.4	11.0270
CoZn-O3	Co ₃ O ₄	a=b=c=8.10905 Å, $\alpha=\beta=\gamma=90^{\circ}$	533.2 (Å ³)	39.2	10 210/
	ZnO	a=b=3.25173 Å, $c=5.20315$ Å, $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$	47.6 (Å ³)	60.8	10.2170

Figure S10 SEM images of (a, d) Co_3O_4 nanosheets; (b, e) ZnO nanosheets; (c, f) Co_3O_4 /ZnO hybrid (CoZn-O2) nanosheets.

Figure S11 (a, d) Low-magnification TEM images, (b, e) high-magnification TEM images, and (c, f) HRTEM images of (a-c) Co₃O₄ and (d-f) ZnO nanosheets.

Figure S12 EDX pattern of CoZn-O2 nanosheet. The detected carbon and copper elements are derived from the lacey support film.

Table S4 Surface areas, Pore volume analysis of Co₃O₄, Co₃O₄/ZnO and ZnO nanosheets

Samples	S_{BET} (m ² /g)	S _{Langmuir} (m ² /g)	V _{pore} (cm ³ /g)	R _{pore} (nm)
C0 ₃ O ₄	7.2	8.5	0.097	26.9
Co ₃ O ₄ /ZnO	38.6	41.1	0.417	21.6
ZnO	73.5	80.6	0.607	16.5

Samples	Co (yes/no)	Zn (yes/no)	Value of O2/O1	Value of Co ²⁺ /Co ³⁺
Co ₃ O ₄	yes	no	0.35	0.60
CoZn-O1	yes	yes	1.06	1.06
CoZn-O2	yes	yes	3.61	1.55
CoZn-O3	yes	yes	2.19	1.14
ZnO	no	yes	0.27	/

Table S5 Element content analysis of Co₃O₄, ZnO, and their hybrids.

Figure S13 Photoluminescence (PL) spectra for Co₃O₄, CoZn-O1, CoZn-O2, CoZn-O3, and ZnO samples.

As shown in **Figure S13**, the PL emission peak at ~400 nm corresponds to the recombination of holes with two-electron-trapped O-vacancy, and the more intensive the peak is, the more oxygen vacancies the sample possesses.³ The CoZn-O2 nanosheets showed the highest luminescence intensity, indicating more oxygen vacancies in the CoZn-O2 nanosheets.

Figure S14 The *ex-situ* XRD patterns of CoZn-O2 electrode at different discharge/charge states.

Figure S15 The initial, second and fifth discharge/charge profiles at 100 mA g^{-1} of (a) Co₃O₄, (b) CoZn-O1, (c) CoZn-O2, (d) CoZn-O3, and (e) ZnO; Cycling performaces at (f) 200 mA g^{-1} and (g) 1000 mA g^{-1} of Co₃O₄, CoZn-O1, CoZn-O2 and CoZn-O3.

Figure S16 Nyquist plots of (a) Co_3O_4 , CoZn-O1, CoZn-O2, CoZn-O3 and ZnO electrodes. Inset: corresponding equivalent electrical circuit; (b) CoZn-O2 electrodes after 1st cycle, 5th cycle, and 10th cycle at 200 mA g⁻¹.

Samples	$R_{s}(\Omega)$	$\boldsymbol{R}_{ct}\left(\Omega ight)$
C0 ₃ O ₄	1.45	201.22
CoZn-O1	1.77	151.06
CoZn-O2	1.83	138.90
CoZn-O3	1.74	161.38
ZnO	1.87	466.05
CoZn-O2 1 st cycle	1.35	105.36
CoZn-O2 5 th cycle	1.02	89.59
CoZn-O2 10 th cycle	1.09	92.14

 Table S6 The corresponding EIS simulation parameters.

The electrochemical impedance spectra (EIS) were measured to further confirm the advantage of the CoZn-O2 electrode. **Figure S16a** shows the Nyquist plots which consist of a semicircle in high frequency region and a sloping line in low frequency region. The inset of **Figure S16a** is the corresponding equivalent electrical circuit. R_s stands for the combination of electrolyte resistance and ohmic resistances of cell components. R_{ct} is mainly due to charge-transfer resistance. The R_{ct} of CoZn-O2 was simulated to be 138.90 Ω , which is much small than other counterparts, as listed in **Table S6**. Furthermore, the R_{ct} of CoZn-O2 decreases after cycling, as shown in **Figure S16b** (105.36 Ω after 1st cycle, 89.59 Ω after 5th cycle, and 92.14 Ω after 10th cycle). The decrease of charge-transfer resistance has been proven to be an important factor for good rate performance and long-term cyclic stability.^{4, 5} The results demonstrated the enhanced kinetics of electronic transportation for CoZn-O2 electrode, which resulted in the excellent electrochemical performance for LIBs.

Figure S17 The cycled SEM images of CoZn-O2 electrodes after (a) 1st cycle, (b) 5th cycle, and (c) 10th cycle at 200 mA g⁻¹.

In order to explore the change of morphology after cycling, which plays an important role for cyclic stability, we have conducted the SEM images of CoZn-O2 electrode after different cycles of 1st cycle, 5th cycle, and 10th cycle at 200 mA g⁻¹, as shown in **Fig. S17**. Although there were some fragments, the nanosheets structure was well-maintained after cycling, which to a large extent contributes to the long-term cyclic stability of CoZn-O2 electrode. The surfaces of nanosheets are rough, which is mainly due to the binder, conductive carbon black and the formation of solid electrolyte interphase (SEI).

Electrode materials	High rate capability /mA h g ⁻¹	Capacity retention based on the second cycle (cycle number)	Ref.
CoZn-O2	716 (1000 mA g ⁻¹) 625 (2000 mA g ⁻¹) 404 (4000 mA g ⁻¹)	No fading at 200 mA g ⁻¹ (50 cycles) 95.6% at 3000 mA g ⁻¹ (1000 cycles)	Our work
Co ₃ O ₄ @MnO ₂	675 (480 mA g ⁻¹) 388 (960 mA g ⁻¹)	73.2% at 120 mA g ⁻¹ (100 cycles)	6
CuO@NiO hollow spheres		No fading at 100 mA g ⁻¹ (200 cycles)	7
ZnO/ZnCo ₂ O ₄ submicron rod	700 (445 mA g ⁻¹)	~84% at 45 mA g ⁻¹ (30 cycles)	8
NiO-ZnO hybrid	707 (3200 mA g ⁻¹)	91.47% at 200 mA g ⁻¹ (120 cycles)	9
SnO ₂ @Fe ₂ O ₃	Inferior rate capability	Poor cycling performance	10
ZnO/ZnCo ₂ O ₄ nanosheets	630 (10000 mA g ⁻¹)	87% at 2000 mA g ⁻¹ (250 cycles)	11
ZnO-NiO-Co ₃ O ₄ hybrid	667 (2000 mA g ⁻¹)	No fading at 500 mA g ⁻¹ (300 cycles)	12
3CoO/CoFe ₂ O ₄ nanocomposites	~400 (6400 mA g ⁻¹)	54.8% at 1000 mA g ⁻¹ (100 cycles)	13
Co ₃ O ₄ /TiO ₂ composite	~400 (1000 mA g ⁻¹)	~83% at 100 mA g ⁻¹ (120 cycles)	14
ZnO/ZnCo ₂ O ₄ /C hybrids	715 (1600 mA g ⁻¹)	68.7% at 500 mA g ⁻¹ (250 cycles)	15
Fe ₂ O ₃ /Co ₃ O ₄ hollow microcubes	272 (800 mA g ⁻¹)	~40% at 100 mA g ⁻¹ (50 cycles)	16
ZnO-NiO hybrid microspheres	432 (1000 mA g ⁻¹)	No fading at 100 mA g ⁻¹ (200 cycles)	17
Co ₃ O ₄ /CuO composite	500 (2500 mA g ⁻¹)	97% at 100 mA g ⁻¹ (150 cycles) ~70% at 1000 mA g ⁻¹ (400 cycles)	18

 Table S7 The comparison of electrochemical performances of bimetallic hybrids for LIBs anode.

- G. Fang, J. Zhou, C. Liang, A. Pan, C. Zhang, Y. Tang, X. Tan, J. Liu and S. Liang, *Nano Energy*, 2016, 26, 57-65.
- R. Chen, J. Yao, Q. Gu, S. Smeets, C. Baerlocher, H. Gu, D. Zhu, W. Morris, O. M. Yaghi and H. Wang, *Chem. Commun.*, 2013, 49, 9500-9502.
- J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan and Y. Xie, *Angew. Chem.*, 2015, 54, 7399-7404.
- 4. D. Li, Y. Sasaki, K. Kobayakawa and Y. Sato, J. Power Sources, 2006, 157, 488-493.
- 5. Y. Sun, J. Han, S. Myung, S. Lee and K. Amine, *Electrochem. Commun.*, 2006, 8, 821-826.
- D. Kong, J. Luo, Y. Wang, W. Ren, T. Yu, Y. Luo, Y. Yang and C. Cheng, *Adv. Funct. Mater.*, 2014, 24, 3815-3826.
- 7. W. Guo, W. Sun and Y. Wang, ACS Nano, 2015, 9, 11462-11471.
- C. W. Lee, S.-D. Seo, D. W. Kim, S. Park, K. Jin, D.-W. Kim and K. S. Hong, *Nano Res.*, 2013, 6, 348-355.
- 9. L. Qiao, X. Wang, L. Qiao, X. Sun, X. Li, Y. Zheng and D. He, *Nanoscale*, 2013, 5, 3037-3042.
- W. Zhou, Y. Y. Tay, X. Jia, D. Y. Yau Wai, J. Jiang, H. H. Hoon and T. Yu, *Nanoscale*, 2012, 4, 4459-4463.
- 11. X. Xu, K. Cao, Y. Wang and L. Jiao, J. Mater. Chem. A, 2016, 4, 6042-6047.
- L. Lu, H.-y. Wang, J.-G. Wang, C. Wang and Q.-C. Jiang, J. Mater. Chem. A, 2017, DOI: 10.1039/c6ta07708k.
- M. Li, Y. X. Yin, C. Li, F. Zhang, L. J. Wan, S. Xu and D. G. Evans, *Chem. Commun.*, 2012, 48, 410-412.
- W. Li, K. Shang, Y. Liu, Y. Zhu, R. Zeng, L. Zhao, Y. Wu, L. Li, Y. Chu, J. Liang and G. Liu, *Electrochim. Acta*, 2015, 174, 985-991.
- 15. X. Ge, Z. Li, C. Wang and L. Yin, ACS Appl. Mater. Interfaces, 2015, 7, 26633-26642.
- 16. Z. Li, B. Li, L. Yin and Y. Qi, ACS Appl. Mater. Interfaces, 2014, 6, 8098-8107.
- 17. Q. Xie, Y. Ma, D. Zeng, L. Wang, G. Yue and D. L. Peng, Sci. Rep., 2015, 5, 8351.
- 18. Q. Hao, D. Zhao, H. Duan and C. Xu, *ChemSusChem*, 2015, 8, 1435-1441.