Supporting Information

Fabrication of Nanoscale Ni/NiO Heterostructures as

Electrocatalyst for Efficient Methanol Oxidation

Juan Wang,^a Detre Teschner, ^b Yuanying Yao, ^a Xing Huang,^{* b} Marc Willinger, ^b

Lidong Shao,* ^a and Robert Schlögl^b

^aShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric

Power, Shanghai University of Electric Power, Shanghai 200090, China. E-mail:

lidong.shao@shiep.edu.cn

^bDepartment of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society,

Faradayweg 4-6, 14195 Berlin, Germany.E-mail: xinghuang@fhi-berlin.mpg.de

Figure S1. XRD pattern of OCNTs

Figure S2. XPS C1s profile of NiO/Ni@CNTs (a), NiO@CNTs (b) and Ni@CNTs (c).

Figure S3. XPS O1sprofile of NiO/Ni@CNTs (a), NiO@CNTs(b) and Ni@CNTs(c).

Figure S4. H_2 -TPR profiles (a) and CO₂-TPD profiles (b) of the catalysts.

Figure S5. Cyclic voltammograms (CV) of NiO/Ni@CNTs (a), NiO@CNTs (b) and Ni@CNTs (c) in 1M KOH. Scan rate: 5, 10, 20, 50, 100, 150, 200 mV s⁻¹.

Figure S6. CVs of catalysts normalized to the surface Ni content in 1M KOH+0.5 M CH_3OH . Scan rate: 50 mV s⁻¹.

Figure S7. CVs of catalysts in the first five cycles.

Figure S8. Current response of methanol oxidation of NiO/Ni@CNTs with the increasing scan rates in 1.0 M KOH+0.5 M methanol (a). Scan rate: 10, 20, 50, 100, 150, 200 mV s⁻¹. Current response of methanol oxidation of NiO/Ni@CNTs with the increasing concentration of methanol (b). Scan rate: 20 mV s⁻¹.

sample	content (wt%) ^a	t dispersion	surface content	surface area	Particle size	Particle size
	()		(mmol g ⁻¹ cat) ^{b)}	(m ² g ⁻¹ _{cat}) ^{b)}	TEM (nm)	XRD (nm)
Ni@CNTs	3.26	4.21	0.023	0.9141	9.17	9.4
NiO@CNTs	3.76	4.50	0.045	1.1277	4.1	4.0
NiO/Ni@CNTs	3.98	4.38	0.0297	1.1616	7.93	8.0

Table S1. Structural parameters of various samples.

^{a)} values determined by ICP–AES. ^{b)} values calculated based on pulse chemisorption analysis.

		Testi	_	
Catalysts	Mass Activity	Scanning rate	CH ₃ OH concentration	Reference s
	(mA mg ⁻¹)	(mV s ⁻¹)		
NiO/Ni@CNTs	2094	50	1.0 M CH ₃ OH	This work
NiO @CNTs	1328	50	1.0 M CH ₃ OH	This work
Ni@CNTs	966	50	1.0 M CH ₃ OH	This work
NiP	1490	50	1.0 M CH ₃ OH	[1]
CNT-Ni/SiC-700	1000	50	1.0 M CH ₃ OH	[2]
NiO	84	20	0.1M CH ₃ OH	[3]
NiO/CNTs	1900	50	0.5 M CH ₃ OH	[4]
NiO/N-CNFs	1800	50	1.0 M CH ₃ OH	[5]
Ni-P/RGO	117	10	0.5 M CH ₃ OH	[6]
Ni-P	60	10	0.5 M CH ₃ OH	[6]
Ni-DES	3	10	0.1M CH ₃ OH	[7]
Ni(OH) ₂ /BDD	600	5	0.47 M CH ₃ OH	[8]

Table S2. Comparison of activity between catalysts in this study and reported Ni based catalysts.

References

1. Tong, Y. Y.; Gu, C. D.; Zhang, J. L.; Huang, M. L.; Tang, H.; Wang, X. L.; Tu, J. P.

J. Mater. Chem. A 2015, 3, 4669-4678.

2. Xie, S.; Tong, X. L.; Jin, G. Q.; Qin, Y.; Guo, X. Y. J. Mater. Chem. A 2013, 1, 2104-2109.

3. Spinner, N.; Mustain, W. E. Electrochim. Acta. 2011, 56, 5656-5666.

4. Tong, X. L.; Qin, Y.; Guo, X. Y.; Moutanabbir, O.; Ao, X. Y.; Pippel, E.; Zhang, M. Knez, L. B. *Small* **2012**, *8*, 3390-3395.

5. Al-Enizi, A. M.; Ghanem, M. A.; El-Zatahry, A. A.; Al-Deyab, S. S. *Electrochim. Acta.* **2014**, *137*, 774-780.

6. Zhang, H.; Gu, C. D.; Huang, M. L.; Wang, X. L.; Tu, J. P. *Electrochem. Commun.* **2013**, *35*, 108-111.

7. Gu, C. D.; Huang, M. L.; Ge, X.; Zheng, H.; Wang, X. L.; Tu, J. P. Int. J. *Hydrogen Energy* **2014**, *39*, 10892-10901.

8. Hutton, L. A.; Vidotti, M.; Patel, A. N.; Newton, M. E.; Uniwin, P. R.; Macpherson, J. V. J. Phys. Chem. C 2010, 115, 1649-1658.