Supporting Information for

Formic Acid Dehydrogenation over Pd NPs Supported on Amine Functionalized SBA-15 Catalysts: Structure-Activity Relationships

Katherine Koh,^a Mina Jeon,^b Chang Won Yoon^{b,c,*} and Tewodros Asefa^{a,d,e*}

^a Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

^b Fuel Cell Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

^c KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea

^e Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

^e Institute for Advanced Materials, Devices and Nanotechnology (IAMDN), Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA

Corresponding Authors' E-mails: (TA) tasefa@rci.rutgers.edu; (CWY) cwyoon@kist.re.kr

Figure S1. (a) Thermogravimetric analysis (TGA) traces, (b) N_2 Adsorption/desorption profiles, and (c) pore size distribution of three different amine-modified SBA-15 materials (SBA-15-Amine, where Amine is PA, SA, or TA groups) and their precursor Ext-SBA-15.

Ext-SBA-15

Pd(II)/SBA-15-Amine

Pd(0)/SBA-15-Amine

Figure S2. Photographs of Ext-SBA-15 (1^{st} row), Pd(II)/SBA-15-Amine (2^{nd} row), and Pd(0)/SBA-15-Amine (3^{rd} row). (a) Pd(II)/SBA-15-PA, (b) Pd(II)/SBA-15-SA, (c) Pd(II)/SBA-15-TA, (d) Pd(0)/SBA-15-SA, (e) Pd(0)/SBA-15-SA, and (f) Pd(0)/SBA-15-TA materials.

Figure S3. The UV-Vis spectra of the aqueous solutions containing three different tetraamine palladium(II) complexes, $[Pd(NH_3)_4Cl_2]$, $[Pd(NH_2CH_3)_4Cl_2]$, and $[Pd(NH(CH_3)_2)_4Cl_2]$: (a) with the same concentration and (b) with similar absorbance using different concentrations.

Figure S4. (a) N_2 Adsorption/desorption profiles, (b) pore size distributions, and (c) thermogravimetric analysis (TGA) traces of Pd/SBA-15-Amine materials (where Amine is PA, SA, or TA groups).

Figure S5. Comparison of Pd 3d peaks of Pd(0)/SBA-15 and different Pd(0)/SBA-15-Amine materials (where Amine is PA, SA, or TA groups).

Figure S6. Recyclability test results for three Pd/SBA-15-Amine catalysts in formic acid dehydrogenation reaction: (a) Pd/SBA-15-PA (1), (b) Pd/SBA-15-SA (2), and (c) Pd/SBA-15-TA (3). The size distribution of the Pd NPs in the catalysts after 3rd reaction cycle is presented inside each TEM image.

Figure S7. FT-IR spectra of 30 ppm of CO gas (a control experiment) (a), and the gaseous products of the reaction during reaction (at 50 min) over (b) Pd/SBA-15-PA, (c) Pd/SBA-15-SA, and (d) Pd/SBA-15-TA catalysts. The latter three spectra show the absence of a peak corresponding to C=O stretching or the absence of CO in the reaction products.

Figure S8. GC result after FA dehydrogenation reaction for 3 h over Pd/SBA-15-PA (catalyst 1). Blue line is peak of CO_2 and red line is peak of H_2 . The result shows peaks corresponding only to CO_2 and H_2 (and no CO).

Table 1. Comparison of the catalytic TOFs at 10 min of Pd/SBA-15-Amine catalysts with respect to those of other recently reported catalysts without additives.^[a]

Entry	Catalyst	Temperature [K] ^b	TOF [h ⁻¹]	Additives	Reference
1a	Pd/SBA-15-PA	299	355	None	This work
1b	Pd/SBA-15-SA	299	190	None	This work
1c	Pd/SBA-15-TA	299	70	None	This work
2	AgPd/C	298	309	None	[1]
3	Pd/mpg-C ₃ N ₄	298	144	None	[2]
4	PdAu/C	298	63	None	[3]
5	$Pd/C_3N_4 (+ hv)$	288	68	None	[4]
6	CoAuPd/C	298	61	None	[5]
7	Pd/CN	298	286	None	[6]
8	$Pd_{0.5}Au_{0.3}Mn_{0.2}/N-SiO_2$	298	172	None	[7]
9	Ag ₁ Pd ₄ /UiO-66	298	107	None	[8]
10	AuPd-CeO ₂ /N-rGO	298	98	None	[9]

11	Au/SiO ₂ -Amine	323	806	SF ^[c] , 25 %	[10]
12	Pd/PDA-rGO	323	385	SF ^[c] , 50 %	[11]
13	AuPd/SBA-15-Amine	323	160	SF ^[c] , 50 %	[12]

^[a] The TOFs of some of the catalysts were calculated based on information provided in the research results reported in the literature; ^[b] Please note that the temperature is different in different cases; ^[c] SF represents sodium formate that was used as additive in the reaction, and its percentage is calculated based on the total volume of formic acid/formate in the solution.

Reference for Table 1:

- 1. S. Zhang, Ö. Metin, D. Su and S. Sun, Angew. Chem. Int. Ed., 2013, 52, 3681–3684.
- 2. J. H. Lee, J. Ryu, J. Y. Kim, S.-W. Nam, J. H. Han, T.-H. Lim, S. Gautam, K. H. Chae and C. W. Yoon, *J. Mater. Chem. A*, 2014, **2**, 9490–9495.
- 3. O. Metin, X. Sun and S. Sun, *Nanoscale*, 2013, 5, 910–912.
- 4. Y.-Y. Cai, X,-H. Li, Y.-N. Zhang, X. Wei, K.-X. Wang and J.-S. Chen, *Angew. Chem. Int. Ed.*, 2013, **52**, 11822–11825.
- 5. Z.-L. Wang, J.-M. Yan, Y. Ping, H.-L. Wang, W.-T. Zheng and Q. Jiang, *Angew. Chem. Int. Ed.*, 2013, **52**, 4406–4409
- 6. Q. Bi, J. Lin, Y. Liu, H. He, F. Huang and Y. Cao, *Angew. Chem. Int. Ed.*, 2016, **128**, 12028–12032.
- 7. Y. Karatas, A. Bulut, M. Yurderi, I. E. Ertas, O. Alal, M. Gulcan, M. Celebi, H. Kivrak, M. Kaya and M. Zahmakiran, *Appl. Catal. B*, 2016, **180**, 586–595.
- S. Gao, W. Liu, C. Feng, N. Shang and C. Wang, *Catal. Sci. Technol.*, 2016, 6, 869-874
- 9. Z. L. Wang, J. M. Yan, Y. F. Zhang, Y. Ping, H. L. Wang and Q. Jiang, *Nanoscale*, 2014, **6**, 3073–3077.
- 10. M. Yadav, T. Akita, N. Tsumori and Q. Xu, J. Mater. Chem., 2012, 22, 12582-12586.
- 11. F.-Z. Song, Q.-L. Zhu and N. Tsumori, Q. Xu ACS Catal. 2015, 5, 5141–5144.
- 12. L. Xu, F. Yao, J. Luo, C. Wan, M. Yea and P. Cui, Y. An RSC Adv., 2017, 7, 4746-4752.