Supplementary Information

Bimetallic (Au–Cu core)@(Ceria shell) nanotube for Photocatalytic

Oxidation of Benzyl Alcohol: Improved Reactivity by Cu

Beibei Chen,^a Xiaomin Li,^a Ruijin Zheng,^b Ruiping Chen,^c Xuan Sun*,^a

^aKey Laboratory for Colloid & Interface Chemistry, Shandong University, Ministry of Education, Jinan, 250100, P. R. China

^bKey Laboratory of Functional Crystal Materials and Device, Shandong University, Ministry of Education, Jinan, 250100, P. R. China

^cChemistry Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou, 350002 (P.R. China)

*Email: <u>sunxuan@sdu.edu.cn</u>

Fig. S1. TEM of samples before calcined with different Au-Cu deposition. (a) Au, (b) Au8Cu2, (c) Au5Cu5, (d) Au1Cu9, and (d) Cu.

Fig. S2. HRTEM of Au₅Cu₅@CeO₂.

Fig. S3. STEM-EDX mapping of CeO_2 nanorods, $Au@CeO_2$, $Au_8Cu_2@CeO_2$, $Au_5Cu_5@CeO_2$, $Au_1Cu_9@CeO_2$ and $Cu@CeO_2$.

Fig. S4. EDS spectra of Au@CeO₂, Au₈Cu₂@CeO₂, Au₅Cu₅@CeO₂, Au₁Cu₉@CeO₂ and Cu@CeO₂.

EDS-Catalysts	AuCeO ₂	Au ₈ Cu ₂ CeO ₂	Au ₅ Cu ₅ CeO ₂	Au1Cu9CeO2	Au ₀ Cu ₁₀ CeO ₂
Ce	87.3400	84.9600	88.7600	80.3400	88.5700
Au (x)	12.6600	5.9500	3.8200	3.1100	0.0000
Cu (y)	0.0000	9.0900	8.1300	11.4300	15.8400
y/(x+y) Theoretical/%	0.0000	20.0000	50.0000	90.0000	100.0000
y/(x+y) Virtual/%	0.0000	60.4300	68.0300	78.6100	100.0000

Table S1. Ce, Au and Cu contents from EDS results.

ICP-Catalysts	AuCeO ₂	Au ₈ Cu ₂ CeO ₂	Au ₅ Cu ₅ CeO ₂	Au1Cu9CeO2	Au ₀ Cu ₁₀ CeO ₂
Au (x)	0.0498	0.0354	0.0245	0.0010	0.0000
Cu (y)	0.0000	0.0004	0.0007	0.0020	0.0308
Ce (z)	1.0250	0.9526	0.8378	1.0830	2.9460
y/(x+y)Theoretical/%	0.0000	20.0000	50.0000	90.0000	100.0000
y/(x+y)/Virtual/%	0.0000	0.0112	0.0278	0.6667	1.0000
x/(x+y+z)/%	4.6334	3.5815	2.8389	0.0921	0.0000
y/(x+y+z)/%	0.0000	0.0405	0.0811	0.1842	1.0347
z/(x+y+z)/%	95.3666	96.3780	97.0800	99.7238	98.9653

Table 2. Ce, Au and Cu contents from ICP results.

Fig. S5. Nitrogen adsorption-desorption curve and specific surface area.

Table S3. BET specific surface areas of the monometallic and bimetallic Au– $Cu@CeO_2$ nanocomposites

Catalysts	AuCeO ₂	$Au_8Cu_2CeO_2$	Au ₅ Cu ₅ CeO ₂	$Au_1Cu_9CeO_2$	CuCeO2
Specific surface area (m ² /g ⁻¹)	88	73	70	92	120

Fig. S6. TEM of Au₁Cu₉@CeO₂ after the long-running photocatalytic reaction.

Fig. S7. Cu 2p of Au₁Cu₉@CeO₂ after photocatalytic oxidation.

Fig. S8. ESR spectra of all the samples measured at room temperature in the dark (dashed line), and under the visible light illumination for 10 mins (solid line), respectively.