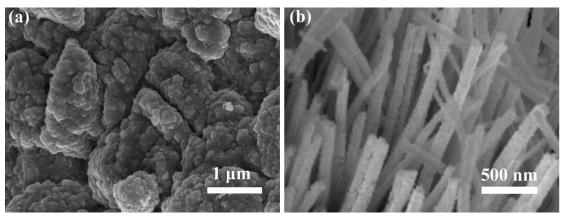
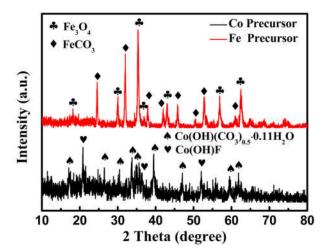

Electronic Supplementary Information

Hierarchical Porous Fe₃O₄/Co₃S₄ Nanosheets as Efficient Electrocatalysts for Oxygen Evolution Reaction


Jing Du^{a,b}, Ting Zhang^a, Jiale Xing^a, and Cailing Xu^a*

^aState Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China


^bKey Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China

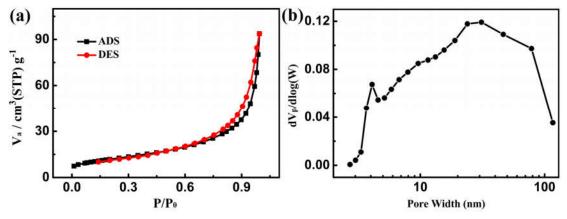

Fig. S1. XRD patterns of the prepared Fe₃O₄ and Co₃S₄ samples.

Fig. S2. SEM images of the prepared Fe₃O₄ (a) and Co₃S₄ (b) samples.

Fig. S3. XRD patterns of the iron and cobalt compound precursors. The diffraction peaks of cobalt compound precursor match well with the standard cards of Co(OH)F (JCPDS No. 50-0827) and $Co(OH)(CO_3)_{0.5} \cdot 0.11H_2O$ (JCPDS No. 48-0083). The diffraction peaks of iron compound precursor match well with the standard cards of Fe_3O_4 (JCPDS No. 75-33) and $FeCO_3$ (JCPDS No. 29-696).

Fig. S4. (a) N_2 adsorption-desorption isotherms for porous Fe_3O_4/Co_3S_4 nanosheets. (b) The characteristic BJH pore size distributions.

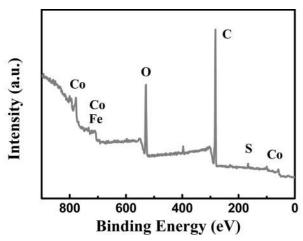
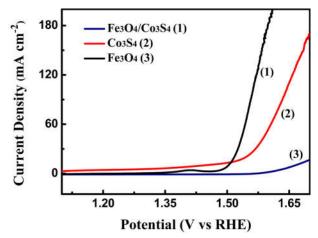



Fig. S5. XPS survey scan of hierarchical porous Fe₃O₄/Co₃S₄ nanosheets.

Fig. S6. Polarization curves of porous Fe_3O_4/Co_3S_4 nanosheets, Fe_3O_4 and Co_3S_4 in 1.0 M KOH at a potential sweep rate of 5 mV/s.

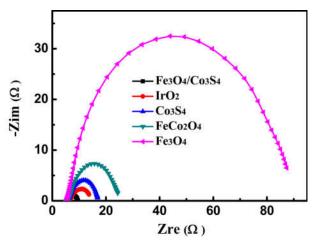
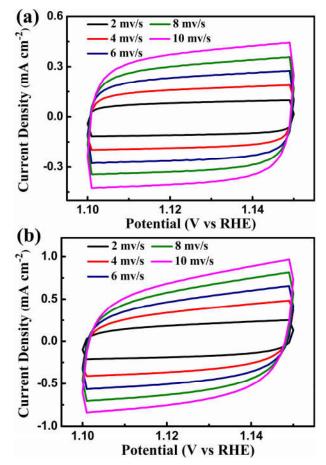



Fig. S7. Nyquist plots of porous FeCo₂O₄, Fe₃O₄/Co₃S₄ nanosheets, IrO₂, Fe₃O₄ and Co₃S₄ samples.

Fig. S8. Electrochemical double-layer capacitance measurements. The cyclic voltammograms (CVs) measurements with various scan rates for porous $FeCo_2O_4$ (a) and Fe_3O_4/Co_3S_4 (b) nanosheets in 1.0 M KOH.

Fig. S9. The proposed OER reaction mechanism based on the Fe₃O₄/Co₃S₄ sample.

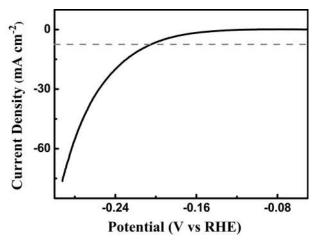
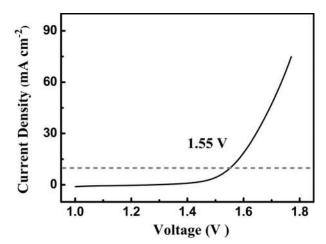



Fig. S10. Polarization curve of porous Fe_3O_4/Co_3S_4 nanosheets in 1.0 M KOH at a potential sweep rate of 5 mV/s.

Fig. S11. Polarization curve of water electrolysis by using Pt/C-IrO₂ couple with a scan rate of 5 mV s⁻¹ in 1 M KOH.