Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

S1

SUPPORTING INFORMATION

FOR

Biomass based nitrogen-doped structure-tunable versatile porous carbon material

Xin Zhou,^{a,b} Penglei Wang,^{a,b} Yagang Zhang,^{*a,b,c} Lulu Wang,^{a,b} Letao Zhang,^a

Lan Zhang,^{*a,b*} Lu Xu,^{*a,b*} and Li Liu^{*a*}

 ^a Center for Green Chemistry and Organic Functional Materials Laboratory, Xinjiang Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Urumqi 830011, China
 ^b University of the Chinese Academy of Sciences, Beijing 100049, China
 ^c Department of Chemical & Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, China

*Corresponding author: Prof. Yagang Zhang Tel: +86-18129307169; Fax: +86-991-3838957; E-mail: ygzhang@ms.xjb.ac.cn

Table of Contents

Chemical structure of CC	S3
Chemical structure of MB	S3
Bulk HNPCs in different shapes	S3
X-ray diffraction patterns of the Na_2CO_3 for HNPCs	S4
Nitrogen adsorption/desorption isotherm and pore size distribution of CC-900	S4
XRD pattern of CC-900	S5
XPS survey spectra and the high-resolution N 1s spectra of CC-900	S5
Nitrogen element with different states on the surface of HNPCs	S6
The rate capability and cycling stability of HNPCs-900	S6
Comparison of gravimetric capacitances at different current density in a	
three electrode cell with 6 M KOH solution as electrolyte	S7
Electrochemical performance of the HNPCs-900 material in 1 M H ₂ SO ₄	S7
Nyquist plots of HNPCs-900 in acidic and basic medium	S8
Static contact angle with basic and acidic electrolytes on HNPCs-900 electrode	
Photographs of electrolyte droplets on the surface of HNPCs-900 electrode	S8
Equilibrium adsorption isotherms of MB on CC-900	

Fig. S1 Chemical structure of cellulose carbamate (CC) as precursor

for the preparation of HNPCs.

Fig. S2 Chemical structure of methylene blue (MB) as model organic dye compound.

Fig. S3 Bulk Nitrogen-doped porous carbons (HNPCs) in different shapes.

Fig. S4 X-ray diffraction patterns of Na₂CO₃ standard and Na₂CO₃ obtained from washing procedure in preparing Nitrogen-doped porous carbons (HNPCs) at different temperature.

Fig. S5 (a) Nitrogen adsorption/desorption isotherm and (b) corresponding pore size distribution of CC-900.

Fig. S6 XRD pattern of CC-900.

Fig. S7 (a) XPS Survey spectra and (b) the High-resolution N 1s spectra of CC-900.

Fig. S8 Illustration of nitrogen element with different chemical states on the surface of

nitrogen-doped porous carbons.

Fig. S9 (a) Variation of specific capacitance with increasing current densities for HNPCs-900. (b) Specific capacitance of HNPCs-900 for 5000 cycles charge/discharge test at current density of 5 A/g (Insert exhibits initial and 5,000th GCD curves).

 C_g (F/g) at different current density Ν SBET Entry Materials (A/g) Ref. (m2/g) % 0.5 1 5 10 Boron and nitrogen co-doped 1 376 0.53 247 155 150 135 15 porous carbon 2 N-doped activated carbon sheets 1998 3.06 312 300 260 250 25 Porous nitrogen-doped carbon 3 52 1765 4.56 210 174 ---130 nanotubes 4 3D nitrogen-doped porous carbon 1470 8.20 296 250 190 180 53 Nitrogen-doped porous graphitic 5 1027 7.72 293 260 235 54 --carbon Nitrogen-doped mesoporous 6 653 3.9 213 195 165 55 -carbons 7 HNPCs-900 3700 7.70 339 323 286 273 This work

Fig. S10 Electrochemical performance of the HNPCs-900 in a three-electrode cell with 1 M H_2SO_4 as electrolyte. (a) CV curves at various scan rate. (b), (c) GCD profiles tested at 0.5-15 A/g. (d) Variation of specific capacitance with increasing current densities.

Table S1. Comparison of gravimetric capacitances of nitrogen-doped porous carbon materials at various

current densities in a three-electrode cell with 6 M KOH solution as electrolyte.

Fig. S11 Nyquist plots of HNPCs-900 in basic and acidic medium, 6 M KOH (red line) and 1 M H2SO4 (blue line) and (Inset shows locally enlarged Nyquist plots in high frequency region).

Table S2. Static contact angle with basic and acidic electrolytes on HNPCs-900 electrode.

Fig. S12 Photographs of (a) basic medium and (b) acidic medium droplets on the surface of HNPCs-900 electrode.

Fig. S13 Equilibrium adsorption isotherms of MB on CC-900 (experimental conditions: 5.0 mg of HNPCs was added in 10 mL MB solution at a designated concentration after stirring for 3 h. MB initial concentration (C_0) =100-600 mg/L, the CC-900 concentration = 0.5 g/L).