CoO_x -carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoter

Jing Wang, Zhongzhe Wei, Haiyan Wang, Yiqing Chen, Yong Wang*

Advanced Materials and Catalysis Group, ZJU-NHU United R&D Center,

Department of Chemistry, Zhejiang University, Hangzhou 310028, P. R. China.

*E-mail: chemwy@zju.edu.cn

Scheme S1. Schematic diagram for the preparation of 3D porous electrode.

Scheme S2. Calcination program for the preparation of 3D porous electrode.

$H_2O + e^- \rightarrow H^* + OH^-$	(1) Volmer	(120 mV dec ⁻¹)
$\mathrm{H_2O^+} e^- + \mathrm{H^*} \rightarrow \mathrm{H_2^+} \mathrm{OH^-}$	(2) Heyrovsky	(40 mV dec ⁻¹)
$\mathrm{H}^* + \mathrm{H}^* \to \mathrm{H}_2$	(3) Tafel	(30 mV dec ⁻¹)

Scheme S3. Hydrogen evolution reaction mechanism in alkaline media.

catalyst	BET surface area (m ² /g)	total pore volume (cm ³ /g)	pore size (nm)	percentage of micropore volume (%)
CoO _x -CNT-CC	88	0.07	5.02	48.5
CoO _x -CC	119	0.06	2.88	98.4
M-CC	109	0.06	3.21	70.1
CC-700	324	0.17	2.68	88.2
CC	1			

Table S1. Textural properties of the catalysts.

Catalyst	BET surface area (m ² /g)	Reference
CoO _x -CNT-CC	88	This work
CoP/CC	5.64	<i>Nano Energy</i> , 2015, 15, 634
Mo-W-P/CC	25	Energy. Environ. Sci. 2016, 9, 1468
CoP/CC	36.5	J. Am. Chem. Soc. 2014, 136, 7587
WP ₂ NWs/CC	23.04	Nanoscale, 2016, 8, 19779
MoP-HS@CC	48.98	<i>RSC Adv.</i> , 2016, 6, 68568
Co-HNP/CC	38	Angew. Chem. Int. Ed., 2016, 55, 6724
CoP ₃ NAs/CFP	21.4	J. Mater. Chem. A, 2016, 4, 14539
NiP ₂ NS/CC	21.9	Nanoscale, 2014, 6, 13440
GCNF@MoS2	19.4	Electrochimica Acta 2016, 219, 604

 Table S2. Summary of the BET surface area of the recently reported solid-state catalysts.

Table S3. Electrochemical parameters of the catalysts.

catalyst	electric conductivity $(\kappa / \Omega^{-1} m^{-1})$	ηª	TS ^b	C_{dl}^{c}	ECD ^d
CoO _x -CNT-CC	1250	99	101	1155	2.29
CoO _x -CC	400	193	155	427	0.96
M-CC	625			162	
CC-700	588			349	
CC	526				

[a] η (mV) represents the overpotential was calculated at 20 mA cm⁻².

[b] TS (mV dec⁻¹) represents Tafel slope.

[c] C_{dl} (mF/cm²) represented electrochemical double layer capacitances. [d] ECD (mA cm⁻²) represents exchange current density.

Catalyst	η-j ^a	j ^b	Electrolyte solution	Reference
CoO _x -CNT-CC	99-20 190-100	374	1 M KOH	This work
CoO _x @CN	232-10	28	1 M KOH	J. Am. Chem. Soc. 2015 , 137, 2688
FeP NAs/CC	218-10	20	1 M KOH	ACS Catal. 2014, 4, 4065
Co-NRCNTs	370-10	4	1 M KOH	Angew. Chem. Int. Ed. 2014 , 53, 4372
Co(OH) ₂ @PAN I on Ni foam	90-10	180	1 M NaOH	Adv. Mater. 2015, 27, 7051
CoSe ₂ /CC	190-10	28	1 M KOH	Adv. Mater. 2016, 28, 7527
NiP ₂ NS/CC	270-100	120	1 M KOH	Nanoscale 2014 , 6, 13440
Co@NG	220-10	60	1 M KOH	<i>Adv. Funct.</i> <i>Mater.</i> 2016 , 26, 4397
CP/CTs/Co-S	190-10	50	1 M KOH	ACS Nano 2016 , 10, 2342
WP NAs/CC	271-100	140	1 M KOH	ACS Appl. Mater. Interfaces 2014 , 6, 21874
NiCoFe/NF	160-10	85	0.1 M KOH	J. Mater. Chem. A. 2016 , 4, 7245
CoMn- S@NiO/CC	232-100	200	1 M KOH	ACS Catal. 2016, 6, 2797
Co ₃ O ₄ NCs/CFP	350-16.5	8	1 M KOH	<i>Chem. Commun.</i> , 2015 , 51, 8066
CoP/CC	209-10	42	1 M KOH	J. Am. Chem. Soc. 2014 , 136, 7587
Co-NCNT/CC	180-10	100	1 M KOH	<i>ChemSusChem</i> 2015 , 8, 1850
Co ₉ S ₈ @C	250-10	30	1 M KOH	ACS Appl. Mater. Interfaces 2015, 7, 980
Fe-CoP/Ti	78-10		1 M KOH	<i>Adv. Mater.</i> 2017 , <i>29</i> , 1602441

 Table S4. Summary of the recently reported solid-state catalysts for HER in basic electrolytes.

Co-NCNT/CC	180-10	100	1 M KOH	<i>ChemSusChem</i> 2015 , 8, 1850
NiS ₂ NA/CC	149-10	~150	1 M KOH	<i>Electrochim. Acta</i> 2015 , 153, 508
Zn-Co-S/TM	238-20	50	1 M KOH	<i>Electrochim. Acta</i> 2016 , 190, 360

[a] η (mV) represents overpotential at current density of j (mA cm⁻²). [b] j represents the current density, which was calculated at -0.3 V.

Fig. S1 SEM images of commercial CC a), CC-700 b), M-CC c), CoO_x-CC d).

Fig. S2 a) SEM images of CoO_x -CNT-CC at low magnifications; b) The enlarged SEM images of CoO_x -CNT-CC.

Fig. S3 a, b, c, d) TEM images of CoO_x -CNT-CC with different magnifications. The red dotted line in c represents the contact surface of CNTs and carbon fiber.

Fig. S4 Co2p XPS of CoO_x-CNT-CC.

Fig. S5 N_2 adsorption-desorption isotherms of CC-700 a), M-CC b), CoO_x-CC c), CoO_x-CNT-CC d).

Fig. S6 The enlarged Polarization curves of Fig. 2a.

Fig. S7 High-resolution N 1s XPS spectra of CoO_x-CNT-CC, N1 (graphitic quaternary N, ~401.1 eV), N2 (pyrrole N, ~400.0 eV), and N3 (pyridine N, ~398.5 eV). The content of N1, N2 and N3 is 27%, 25% and 48%, respectively.

Fig. S8 a, c, e, g) Cyclic voltammetry curves of CC-700, M-CC, CoO_x -CC and CoO_x -CNT-CC, respectively, at different scan rates. The purple arrow indicates the scan rate from 2 mV to 12 mV. b, d, f, h) The differences in current density variation

Fig. S9 Tafel curves of CoO_x-CNT-CC and CoO_x-CC.

Fig. S10 The black line represents the XRD pattern of the CoO_x -CNT-CC-HERacid. The blue line represents the XRD pattern of the electrode that CoO_x -CNT-CC-HER-acid after HER test.

As shown in Fig. S10, even CoO_x -CNT-CC-HER-acid was further tested, it appeared the characteristic peaks of metallic cobalt, suggesting that metallic cobalt is extremely stable in our system.

Fig. S11 Polarization curves of CoO_x-CNT-CC-HER-acid in 1 M KOH and 1 M KOH+20 mM KSCN.

Fig. S12 a, b) SEM images of CoO_x-CNT-CC after long-term HER test. c, d) HRTEM images of CoO_x-CNT-CC after long-term HER test.

Fig. S13 Overpotential (η) of CoO_x-CNT-CC tested under different temperature. η was calculated at 10 mA cm⁻².