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Supplementary results:
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Figure S1. Water droplets placed on the composite superhydrophobic surfaces of various substrates. 
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Knife scratch path

Figure S2. Schematic of knife-scratch setup
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Figure S3. SEM images of the composite coatings after (a) 400 cycles of abrasion, (b) 500 cycles of 
abrasion. The inset is the water contact angle of the coating.
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Figure S4. The composite superhydrophobic coating retained its water-repellent property even after 
knife scratches
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Figure S5. Water contact angles and sliding angles of the as-prepared superhydrophobic coating with 
different pH of aqueous solution immersion tests. The composite coatings still remain 
superhydrophobicity after immersion tests for 24h, demonstrated excellent pH-tolerant property.
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Figure S6. (a) Potentiodynamic polarisation curves of different immersion time in pH=1 hydrochloric 
acid aqueous solution. (b) Corrosion potentials and current densities panel of the samples with different 
immersion time
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Figure S7. Interfacial model for chemical stability mechanism of the composite superhydrophobic 
coating in corrosive medium.

300nm

Figure S8. SEM image of the composite coating after immersion test for 6d.
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Figure S9. The water contact angles and sliding angles of the composite superhydrophobic coatings 
after solvent resistance tests for various time, a) acetone, b) butyl acetate, c) xylene, d) n-hexane.
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Figure S10.  XPS spectra of the composite superhydrophobic coating before (0 hours) and after 
thermal stability test (annealed 80 and 220 hours at 400˚C). 
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Table S1. Surface composition of the composite superhydrophobic coating before and 
after thermal stability test (annealed 80 and 220 hours at 400˚C).

Atomic percent (atom%)
Sample

C O Si

0h 53.61 31.05 15.33

80h 11.86 56.65 31.49

220h 10.18 58.31 31.51
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Figure S11. TGA curves of (a) the composite superhydrophobic coating, (b) the siloxane 
functionalized waterborne acrylic copolymer. 
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Figure S12. Image of a water droplet on the coated glass slide under oil, which still exhibits 
superhydrophobicity.
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Figure S13. Schematic illustration of self-cleaning test. (a) Dirt removal test on coated surface in air. 
(b) Dirt removal test on oil-contaminated coated surface under oil.
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Figure S14. Self-cleaning action of the composite coatings performed on artificially contaminated 
surfaces with graphite and SiC particles in air.
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Scheme S1. A schematic structure of typical silicone-acrylic copolymer 



S-10

4000 3200 2400 1600 800

70
111

65
10

7411
65

14
53

17
24

29
25

34
35

Wavenumber(cm-1)

Tr
an

sm
itt

an
ce

%
(a

.u
)

 

 

Figure S15. FT-IR spectrum of the silicone-acrylic copolymer (SAC)

Analysis on FT-IR result: The peak at 3435 cm-1 is assigned to the stretching vibration of –OH, while 
the peaks from 3100 cm-1 to 3000 cm-1 correspond to the stretching vibration of C–H on the benzene 
ring. The peak at 2925 cm-1 corresponds to the characteristic asymmetrical stretching vibration of –
CH2–, while the strong peak at 1724 cm-1 is attributed to the stretching vibration of C=O. The peak at 
1453 cm-1 is due to the asymmetrical deformation vibration and symmetrical deformation vibration of –
CH3, whereas the peak at 1165 cm-1 is assigned to the stretching vibration of C–O–C from esters. 
Besides, there exists an obvious peak at 1074 cm-1, which is well consistent with the characteristic 
stretching vibration peaks of Si-O-C. 


