Supporting information

Highly Dispersed Co-based Fischer-Tropsch Synthesis Catalysts from

Metal-Organic Frameworks

Bin Qiu^a, Ce Yang^b, Wenhan Guo^a, Yao Xu^b, Zibin Liang^a, Ding Ma^{b,*} and Ruqiang

Zou^{a,*}

B. Qiu, W. Guo, Prof. R. Zou

[a] Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials,

Department of Materials Science and Engineering, College of Engineering, Peking

University, Beijing 100871, P. R. China

E-mail: rzou@pku.edu.cn

[b] Beijing National Laboratory for Molecular Sciences, College of Chemistry and

Molecular Engineering, Peking University, Beijing 100871, P. R. China

Email: dma@pku.edu.cn.

Fig. S1. PXRD pattern of ZIF-67

Fig. S2. PXRD pattern of Co-MOF-74

Fig. S3. N₂ adsorption-desorption isotherms of ZIF-67

Fig. S4. N₂ adsorption-desorption isotherms of Co-MOF-74

Fig. S5. Thermogravimetric analysis of ZIF-67 under N₂

Fig. S6. Thermogravimetric analysis of Co-MOF-74 under N₂

Fig. S7. PXRD patterns of Co@C-550 composites after 100 h test

Fig. S8. PXRD patterns of Co@NC-550 composites after 100 h test

Fig. S9. (a) TEM images of Co@C-550 composites after 100 h test, (b) HRTEM images of Co@C-550 composites after 100 h test, (c) TEM images of Co@NC-550 composites after 100 h test and (d) HRTEM images of Co@NC-550 composites after 100 h test

Sample	Scattering	CN	DW	$\Delta E_0 (eV)$	R (Å)
Co@NC-550	Co-N	2.48	9.03	-3.78	2.01
	Co-Co	5.00	7.25	-3.78	2.49
Co@C-550	Co-C	4.72	14.72	-3.00	2.11
	Co-Co	6.51	8.00	-3.00	2.50

Table S1. Fitting parameter for Co@NC-550 and Co@C-550 catalysts

Table S2. The contents of Co elements in pure MOFs and MOFs derived

nanomaterials are measured by ICP-OES

	Co (wt %)		
Co-MOF-74	19		
Co@C-550	52		
ZIF-67	25		
Co@NC-550	30		

Catalyst	Т	Р	GHSV	СО	CH ₄	C ₂ -C ₄	C_{5}^{+}	Ref
	(°C)	(MPa)		conversion				
				(%)				
Fe-BTC derived Fe@C	340	2	30000 h ⁻¹	72	14.6	29 ^a	NA	11
Fe-BTC derived Fe@C	340	2	30000 h ⁻¹	53	13	47ª	NA	12
Fe-MIL-88B derived composites	300	2	36000 h ⁻¹	33.8	11.5	25.1	63.4	13
Fe-MIL-88B-NH ₂ derived composites	270	2	36000 h ⁻¹	13.1	13.1	33.5	53.4	
Co@MIL-53(Al)	240	2	0.64 L gcat ⁻¹ h ⁻¹	23.8	13.3	13.5	67.7	32
ZIF-67 derived Co@NC	230	3	24 L gcat ⁻¹ h ⁻¹	10	22	37	31	This work
Co-MOF-74 derived Co@C	230	3	24 L gcat ⁻¹ h ⁻¹	30	18	10	65	This work

Table S3. Comparison of the FTS catalytic activities of Co@C-550 and Co@NC-550

with the reported MOF-derived catalysts.

a: C₂-C₅

NA: Not Available