Electronic Supplementary Information (ESI)

Interface Engineering of 3D BiVO₄/Fe-Based Layered Double Hydroxide

Core/Shell Nanostructures for Boosting Photoelectrochemical Water Oxidation

Yukun Zhu,^{a,b} Jun Ren,^c Xianfeng Yang,^d Guojing Chang,^b Yuyu Bu,^e Guodong Wei,^a Wei Han*a and Dongjiang Yang*^{b,f}

^aKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China

^bCollaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China

°School of Chemical and Environmental Engineering, North University of China, Taiyuan 030051, China

^dAnalytical and Testing Centre, South China University of Technology, Guangzhou 510640, China

eInstitute of Technology and Science, Tokushima University, 2-1 Minami-Josanjima, Tokushima 770-8506, Japan

^fKey Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, Taiyuan 030024, China.

Email: d.yang@qdu.edu.cn (Dongjiang Yang*); whan@jlu.edu.cn (Wei Han*)

The Fabrication of BiVO₄ Seed Layer

For the fabrication of BiVO₄ seed layer on the fluorine doped tin oxide (FTO) coated glass substrate (<15 ohm·sq⁻¹, 1.5 cm ×1.5 cm),¹ Bi(NO₃)₃·5H₂O (5 mmol), NH₄VO₃ (5 mmol), and citric acid (10 mmol) were dissolved in 15 mL of 20% HNO₃ aqueous solution and stirred for 30 min to get a transparent blue colored solution. Then, 3.75 mL acetic acid and 0.6 g polyvinyl alcohol (PVA-124, Mw~195,000) were added to the above solution and stirred vigorously until the solution became transparent. 40 μ L of above solution was dropped and spin-coated twice on a pre-cleaned FTO substrate at the rotation rate of 4000 rpm for 50 s, and followed by calcined in a muffle furnace at 400 °C for 3 h.

The Formation of Fe-Based Layered Double Hydroxides (LDH)

The electrochemical reaction was controlled at -1.0 V vs. SCE, mainly involving in the reduction of sulfate ions (SO₄²⁻) and nitrate ions (NO₃⁻) at the BiVO₄ film surface to generate the hydroxide ions (OH⁻) and increase the pH value. Subsequently, the Ni²⁺ and Fe²⁺ ions and electro-generated OH⁻ can easily lead to the precipitation of bimetallic hydroxide on the surface of the film.^{2,3} After the exposure in air, Fe²⁺ was converted to Fe³⁺ by the self-oxidation, leading to the fabrication of Ni_{1-x}Fe_x-LDH.

$$SO_{4}^{2-} + H_{2}O + 2e^{-} \rightarrow SO_{3}^{2-} + 2OH^{-}$$

$$NO_{3}^{-} + 7H_{2}O + 8e^{-} \rightarrow NH_{4}^{+} + 10OH^{-}$$

$$(1 - x)Ni^{2+} + xFe^{2+} + 2OH^{-} \rightarrow Ni_{1-x}^{2+}Fe_{x}^{2+} - OH_{2}$$

$$Ni_{1-x}^{2+}Fe_{x}^{2+} - OH_{2} - xe^{-} \rightarrow Ni_{1-x}^{2+}Fe_{x}^{3+} - LDH$$

The Co_{1-x}Fe_x-LDH arrays were prepared *via* the same method by replacing Ni(NO₃)₂·6H₂O with Co(NO₃)₂·6H₂O

Computational Models.

Scheme S1. The theoretical models used in the calculations. (a) $BiVO_4$ (010) surface, (b) $BiVO_4$ (110) surface, (c) $BiVO_4$ (110)/ $Ni_{0.5}Fe_{0.5}$ -LDH (001), (d) $BiVO_4$ (010)/ $Ni_{0.5}Fe_{0.5}$ -LDH (110) and (e) $BiVO_4$ (110)/ $Ni_{0.5}Fe_{0.5}$ -LDH (110) surface interface.

The Theoretical Calculations of Oxygen Evolution Reaction (OER).

The water splitting reaction can be written as the Equation: $^{2}H_{2}O(l) \rightarrow O_{2}(g) + ^{2}H_{2}(g)$. We assume that the OER is processed in the four electrons pathway, as follows:

$$H_2O(l) + * \rightarrow *OH + e^- + H^+$$

$$* OH \rightarrow * O + H^{+} + e^{-}$$

* O + H₂O (l)
$$\rightarrow$$
 * OOH + H⁺ + e⁻

* OOH
$$\rightarrow$$
 O₂ (g) + H⁺ + e⁻

The elementary steps by which the OER occurred at neutral pH are believed to involve in the adsorbed OH and O species on the surface (*) according to the following Equation:^{4,5}

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_{U} + \Delta G_{PH}$$

Where the ΔE , ΔZPE and ΔS represent the different intermediates energy, zero-point energy changes, and entropy of the reaction, respectively. The ΔE is obtained from DFT calculation, while the ΔZPE and ΔS are calculated from the values in previous reports.⁶ The each step of ΔG are obtained according to the approach by Rossmeisl et al.⁷ The Gibbs free energies of above equation depend on the intermediates adsorption energies of *O, *OH and *OOH. They are calculated relative to H₂O and H₂ in the gas phase at U = 0.0 V, standard conditions (1.23 V *vs.* RHE), and a fixed "standard" coverage of half of the adsorbate species. U is the potential measured against RHE at standard conditions (T = 298.15 K, P = 1 bar, pH = 0). The theoretical overpotential is defined as: overpotential = max [ΔG_1 , ΔG_2 , ΔG_3 , ΔG_4]/e - 1.23 V.

Supporting Figures and Discussion

Figure S1. FESEM images of BiVO₄/Co_{1-x}Fe_x-LDH films.

Figure S2. XRD patterns of $Ni_{0.5}Fe_{0.5}$ -LDH film on FTO and $BiVO_4/Ni_{0.5}Fe_{0.5}$ -LDH film that the electrodeposition time for $Ni_{0.5}Fe_{0.5}$ -LDH was 1,000 s.

Figures S3. High Angle Annular Dark Field (HAADF)-STEM image and corresponding EDS mapping images of BiVO₄/Ni_{0.5}Fe_{0.5}-LDH.

Figure S4. UV-vis absorbance spectra of the BiVO₄ and BiVO₄/Ni_{0.5}Fe_{0.5}-LDH film.

Figure S5. The equivalent circuit for fitting the EIS results. In the equivalent circuit, R_s is the solution resistance, R_t is the electron transfer resistance at the photoanode; CPE was constant phase angle element. The parallel disposition of the R_t -CPE circuit with (R_{ss} , CPE2 and W_{ss}) means the band bending in the charge space layer of the photoelectrode and surface state filling occur simultaneously when the potential changes. R_{ss} , CPE2 and W_{ss} were used to describe the behaviors of the photogenerated electron-hole pairs on the interface between the photoanode and the electrolyte. R_{ss} and W_{ss} were the electron transfer resistance at the photoanode/electrolyte interface and the Warburg resistance caused by some delay in the surface states response, respectively.^{8,9}

Figures S6. (a) Stability for BiVO₄ and BiVO₄/Ni_{0.5}Fe_{0.5}-LDH photoanodes under continuous illumination at 1.23 V *vs.* RHE for 12 h. (b) SEM image, (c) XRD pattern and (d) high resolution XPS spectra of Ni 2p and Fe 2p for the BiVO₄/Ni_{0.5}Fe_{0.5}-LDH film after continuous illumination at 1.23 V *vs.* RHE for 12 h.

Figures S7. Nyquist plots of the EIS measured at the open circuit potential for the BiVO₄ and BiVO₄/Co_{0.5}Fe_{0.5}-LDH photoanodes under AM 1.5G (100 mW/cm²) illumination.

Figure S8. The density of states (DOS) of (a) $Ni_{0.75}Fe_{0.25}$ -LDH surface model, (b) $BiVO_4$ (110) surface model, and (c) $BiVO_4$ (110)/ $Ni_{0.5}Fe_{0.5}$ -LDH interface model.

Figure S9. Standard Gibbs free energy diagrams for OER over (a) $BiVO_4$ (010) surface, (b) $Ni_{0.75}Fe_{0.25}$ -LDH (001) surface, (c) $Ni_{0.5}Fe_{0.5}$ -LDH (001) surface, (d) $Ni_{0.75}Fe_{0.25}$ -LDH (110) surface and (e) $Ni_{0.5}Fe_{0.5}$ -LDH (110) surface. (f) The OER at U=1.23 V over LDH (110) surface. The rate-determining steps for $BiVO_4$ and NiFe-LDH are the oxidation of H_2O to *OH and *OH to *O, respectively. Therefore, the overpotentials for $BiVO_4$ and NiFe-LDH are calculated from ΔG_1 and ΔG_2 , respectively.

Composites	Deposition method	Deposition	$\Delta E_{\text{onset}}^{1}$	Enhancement	Reference
		time	(mV)	factor ²	
ZnO@CoNi-LDH	electrodeposition	100 s	150	3.0	10
NiFe-LDH/Ta ₃ N ₅	solvothermal	17 h	100	2.0	11
α-Fe ₂ O ₃ /Zn-Co LDH	electrodeposition	60 s	-	1.4	12
Mn:Fe ₂ O ₃ /NiFe-LDH	hydrothermal	6 h	200	1.3	13
TiO ₂ /rGO/NiFe-LDH	electrodeposition	50 s	-	1.3	14
TiO ₂ @CoNi-LDHs	electrodeposition	30 s	-	3.3	15
TiO ₂ /ZnFe-LDH	photo-assisted	50 s	-	1.9	16
	electrodeposition				
WO ₃ @NiFe-LDH	electrodeposition	200 s	60	1.4	17
CoAl-LDH@BiVO4	hydrothermal	4 h	540	2.0	18
BiVO ₄ /CoLa-LDH	electrodeposition	20 s	530	2.0	19
CdTe@LDH@BiVO4	hydrothermal	15 h	-	1.1	20
BiVO ₄ /NiFe-LDH	electrodeposition	20 s	320	4.0	This work

Table S1. Comparison table for the LDH/photoelectrode composites for PEC water oxidation under AM 1.5G (100 mW·cm⁻²) illumination.

1. Cathodic shift of the onset potential (E_{onset}) of water oxidation photocurrent after the LDH deposition.

2. Increase of water oxidation photocurrent at 1.23 V vs. RHE after the LDH deposition.

Table S2. Fitted parameters of the EIS plots of $BiVO_4$, $BiVO_4/Ni_{0.5}Fe_{0.5}$ -LDH and $BiVO_4/Co_{0.5}Fe_{0.5}$ -LDH interface nanostructure photoanodes in 0.5 M Na₂SO₄ solution.

Sample	$R_s (\Omega \cdot cm^2)$	$R_t \left(\Omega \cdot cm^2 \right)$	$R_{ss} (k\Omega \cdot cm^2)$
BiVO_4	13.66	690.3	108.2
BiVO ₄ /Ni _{0.5} Fe _{0.5} -LDH	13.31	571.2	40.87
BiVO ₄ /Co _{0.5} Fe _{0.5} -LDH	13.50	610.5	58.46

References

- (1) Kim, C. W.; Son, Y. S.; Kang, M. J.; Kim, D. Y.; Kang, Y. S. Adv. Energy Mater., 2015, 1501754.
- (2) Li, Y.; Zhang, L.; Xiang, X.; Yan, D. P.; Li, F. J. Mater. Chem. A, 2014, 2, 13250-13258.
- (3) Lu, X. Y.; Zhao, C. Nat. Commun., 2015, 6, 6616.
- (4) García-Mota, M.; Vojvodic, A.; Metiu, H.; Man, I. C.; Su, H. Y.; Rossmeisl, J.; Nørskov, J. K. *ChemCatChem*, 2011, 3, 1607-1611.
- (5) Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. J. Am. Chem. Soc., 2013, 135, 13521-13530.

- (6) Valdés, A.; Qu, Z. W. Kroes, G. J.; Rossmeisl, J.; Nørskov, J. K. J. Phys. Chem. C, 2008, 112, 9872-9879.
- (7) Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. *ChemCatChem*, 2011, 3, 1159-1165.
- (8) Bu, Y. Y.; Chen, Z. Y.; Li, W. B. Appl. Catal. B: Environ., 2014, 144, 622-630.
- (9) Spagnol, V.; Sutter, E.; Debiemme-Chouvy, C.; Cachet, H.; Baroux, B. *Electrochim. Acta*, 2009, 54, 1228-1232.
- (10) Shao, M. F.; Ning, F. Y.; Wei, M.; Evans, D. G.; Duan, X. Adv. Funct. Mater., 2014, 24, 580-586.
- (11) Wang, L.; Dionigi, F.; Nguyen, N. T.; Kirchgeorg, R.; Gliech, M.; Grigorescu, S.; Strasser, P.; Schmuki, P. *Chem. Mater.*, 2015, **27**, 2360-2366.
- (12)Xu, D. Y.; Rui, Y. C.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. Appl. Sur. Sci., 2015, **358**, 436-442.
- (13) Huang, J. W.; Hu, G. W.; Ding, Y.; Pang, M. C.; Ma, B. C. J. Catal., 2016, 340, 261-269.
- (14)Ning, F. Y.; Shao, M. F.; Xu, S. M.; Fu, Y.; Zhang, R. K.; Wei, M.; Evans, D. G.; Duan, X. *Energy Environ. Sci.*, 2016, **9**, 2633-2643.
- (15) Chen, W. J.; Wang, T. T.; Xue, J. W.; Li, S. K.; Wang, Z. D.; Sun, S. Small, 2017, 1602420.
- (16)Zhang, R. K.; Shao, M. F.; Xu, S. M.; Ning, F. Y.; Zhou, L.; Wei, M. *Nano Energy*, 2017, **33**, 21-28.
- (17)Fan, X. L.; Gao, B.; Wang, T.; Huang, X. L.; Gong, H.; Xue, H. R.; Guo, H.; Song, L.; Xia, W.; He, J. P. *Appl. Catal. A*, 2016, **528**, 52-58.
- (18)He, W. H.; Wang, R. R.; Zhang, L.; Zhu, J.; Xiang, X.; Li, F. J. Mater. Chem. A, 2015, **3**, 17977-17982.
- (19)Chhetri, M.; Dey, S.; Rao, C. N. R. ACS Energy Lett., 2017, 2, 1062-1069.
- (20) Tang, Y. Q.; Wang, R. R.; Yang, Y.; Yan, D. P.; Xiang, X. ACS Appl. Mater. Interfaces, 2016, 8, 19446-19455