Electronic Supporting Information

One-step extend strategy with ionic liquid assisted synthesis of

Ni₃S₄-MoS₂ heterojunction electrodes for supercapacitors

Wenhao Luo^a, Guofeng Zhang^a, Yingxue, Cui^a, Yan, Sun^a, Qing Qin^a, Jing zhang^a and Wenjun Zheng^{*a,b}

a. Department of Chemistry, and Key Laboratory of Advanced Energy Materials Chemistry (MOE), TKL of Metal and Molecule-

based Material Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.

b. Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, 300071, P. R. China.

*E-mail: zhwj@nankai.edu.cn. Tel.: +86 22 23507951. Fax: +86 22 23502458.

Figure S1. EDS mapping images of the whole Ni_3S_4 -MoS₂ nanoflower.

Figure S2. EDS of Ni₃S₄-MoS₂

Figure S3. (a) SEM (c) TG (d) XRD of Mo precursor and (b) FT-IR of [BMIM]SCN and Mo precursor.

Element	Content (wt%)	
N	6.54	
С	22.32	
н	3.72	

Table S1. Elemental analyzer result of Mo precursor

Figure S4. (a) SEM, (b) XRD of Ni precursor

Figure S5. (a) SEM, (b) TEM and (c)XRD of Co_3S_4 -MoS₂.

Figure S6. (a,b) SEM, (c) XRD and (d) EDS-mapping of MnS-MoS₂.

Fig.S7 The common reaction progress schematic of M_xS_y -MoS₂.

Figure S8. (a) SEM, (b) XRD, (c) XPS spectra of S 2p peaks, (d) XPS spectra of Mo 3d and S 2s peaks of MoS_2 for SCs performance comparison.

Figure S9. CV curves of (a) MoS_2 (b) Ni_3S_4 - MoS_2 (c) Co_3S_4 - MoS_2 at scan rate of 50 mVS⁻¹ and (d) impedance Nyquist plots of MoS_2 , Ni_3S_4 - MoS_2 and Co_3S_4 - MoS_2 at open circuit potential.

Figure S10. (a,b) Plots of anodic and corresponding cathodic peak current densities vs the square root of scan rate of the Ni_3S_4 - MoS_2 , respectively.

performances				
	Cycling stability	Rate capability	Reference	
MoS ₂ /PANI	6000 cycles	496 F/g at 1A/g	ACS Appl. Mater. Interfaces 7 (2015) 28294-28302	
MoS₂/rGO	50000 cycles	416 F/g at 1A/g	ACS Appl. Mater. Interfaces 8 (2016) 32842-32852	
MoS ₂ /Oleylamine	5000 cycles	50.65 mF/cm ² at 0.37 A/g	Chem. Mater.28 (2016) 657-664	
MoS ₂ /Graphene	15min	4.29 mF/cm ² at 5 mV/s	ACS Appl. Mater. Interfaces 7 (2015) 17388-17398	
MoS_2/C ball	5000 cycles	201 F/g at 1A/g	Int. J. Hydrogen Energy 40 (2015) 10150.	
MoS ₂ /MWCNT	1000 cycles	452.7 F/g at 1 A/g	Energy 67 (2014) 234	
MoS ₂ -C aerogel	1500 cycles	260 F/g at 1A/g	J. Electroanal. Chem. 752(2015)33	
MoS ₂	5000 cycles	368 F/g at 5mV/s	J. Power Sources 285(2015)63.	

Table S2. Selected MoS ₂	, X-MoS ₂ hybrid materials and	l its electrochemical
-------------------------------------	---	-----------------------

Figure S11. (a)Comparative CV curves of Ni_3S_4 -MoS₂ and AC electrodes. (b) CV curves of the Ni_3S_4 -MoS₂ //AC asymmetric supercapacitor at different potential windows at a scan rate of 20 mV s⁻¹ in a two-electrode system.

Figure S12. A LED lamp lighted by two new AA batteries.