High Efficiency and Stable Tungsten Phosphide Cocatalyst for

Photocatalytic Hydrogen Production

Supporting Information

Jinxing Zhang,¹ Weifeng YAO,^{1*} Cunping Huang,² Penghui Shi¹, Qunjie Xu¹

¹Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, College of Environmental & Chemical Engineering, Shanghai University of Electric Power, Shanghai, P. R. China. ²Aviation Fuels Research Laboratory, Federal Aviation Administration William J. Hughes Technical Center, Atlantic City International Airport, NJ 08405, U.S.A.

Figure S1. XRD patterns of 4.0 wt.% WP/CdS photocatalyst before and after photocatalytic hydrogen production under visible light irradiation ($\lambda > 420$ nm).

Figure S2. SEM images of WP/CdS before (a) and after (b) photocatalytic hydrogen production.

Figure S3. TEM images of WP/CdS before (a) and after (b) photocatalytic hydrogen production.

Figure S4. Cd 3d (left) and S 2p XPS (right) spectra of 4.0 wt.% WP/CdS photocatalyst before and after photocatalytic hydrogen production

Figure S5. W 4f (left) and P 2p (right) XPS spectra of 4.0 wt.% WP/CdS photocatalyst before and after photocatalytic hydrogen production.

Figure S6. (a) Hydrogen production and (b) Rate of hydrogen production from WP/CdS, bare CdS and Pt/CdS photocatalysts under visible light. (Reaction temperature: room temperature; Light Source: visible light ($\lambda > 420$ nm); Catalyst weight: 50 mg; Photolyte: 100 mL of 1.0 M (NH₄)₂SO₃ solution).

Table S1. Summary hydrogen production rates and quantum efficiencies for non-noble metal based cocatalysts.

Non-noble metal Cocatalyst/Photoca talyst	Sacrificial Agent	H2 Production Rate	Quantum Efficiency	Ref.
2.0 wt.% NiS ₂ /g-C ₃ N ₄	TEOA [*]	4.06 μmol·h ⁻¹	N/A	C. Xue et al. ¹
0.33 mg CdS + 0.75 mg Co ₂ P	DL-mandelic acid	19373 μmol·h ⁻¹ ·g ⁻¹	6.8%	Y Chen et al. ²
16.7 wt.% MoP/CdS	Lactic acid	163.2 μmol·h ⁻¹ ·mg ⁻¹	5.6% at 450 nm	P. Du et al. ³
5.0 wt.% FeP/CdS	Lactic acid	202000 μ mol·h ⁻¹ ·g ⁻¹	Over 35% at 520 nm	Y Chen et al. ⁴
0.5 wt.% Ni ₂ P/CdS	Na ₂ S+ Na ₂ SO ₃	553 μmol·h ⁻¹ ·mg ⁻¹	41% at 450 nm	P. Du et al. ⁵
1.25 wt.% NiS/C ₃ N ₄	TEOA	48.2 μmol·h ⁻¹	1.9% at 440 nm	R. Xu et al. ⁶
5.0 mol% CoS _x /TiO ₂	CH ₃ CH ₂ OH	838.9µmolh ⁻¹ g ⁻¹	N/A	Y. Li et al. ⁷
60.0 wt.% CdS + WS ₂ -40.0 wt.%	Lactic acid	373.41µmol·h ⁻¹ ·g ⁻¹	25.03% at 420 nm	Y Wu et al. ⁸
MoS ₂ /TiO ₂ /E Y ^{**}	TEOA	16.7 mmol·h ⁻¹ ·g ⁻¹	N/A	P. Du et al. ⁹
4.0 wt.% WP/CdS	(NH ₄) ₂ SO ₃	155.17 μmol·h ⁻¹	10.2% at 420 nm	This work

*Triethanolamine; **Eosin Y.

	Atom content (atom%)				
Element	XPS		EDX		
	Before	After	Before	After	
Cd	58.2	56.2	48.3	47.7	
S	40.0	41.7	44.8	44.0	
W	0.3	0.3	4.7	5.4	
Р	1.5	1.7	2.3	2.9	

Table S2. EDX and XPS element content analysis of WP/CdS

Table S3. Summary hydrogen evolution reaction (HER) activities in acid media for WP based electrocatalysts.

Catalyst	Tafel Slope (mV dec ⁻¹)	Current density j (mA/cm ²)	Overpotential at the corresponding j (mV)	Ref.
WP	127 (0.5 M H ₂ SO ₄)	10	435	This work
Amorphous WP	54 (0.5 M H ₂ SO ₄)	10	120	R E.Schaak ¹⁰
WP NPs@NC*	58 (0.5 M H ₂ SO ₄)	10	102	X Liu ¹¹
	69 (0.5 M H ₂ SO ₄)	10	130	
WP NAs/CC**	125 (1.0 M PBS ^{***})	10	200	X Sun ¹²
	102 (1.0 M KOH)	10	150	

*Nitrogen-doped carbon; **Nanorod arrays on carbon cloth. ***Phosphate Buffered Saline.

Photocatalyst	$\mathbf{S}_{\mathrm{BET}}[\mathbf{m}^2 \cdot \mathbf{g}^{-1}]$
Pure CdS	3.6
4.0 wt.% WP/CdS	4.7
0.5 wt.% Pt/CdS	4.3

Table S4. Specific BET surface areas of pure CdS, 4.0 wt.% WP/CdS and 0.5 wt.% Pt/CdS photocatalysts

References

1. Yin, L.; Yuan, Y.-P.; Cao, S.-W.; Zhang, Z.; Xue, C., Enhanced visible-light-driven photocatalytic hydrogen generation over g-C3N4 through loading the noble metal-free NiS2 cocatalyst. *RSC Advances* **2014**, *4* (12), 6127.

2. Cao, S.; Chen, Y.; Hou, C.-C.; Lv, X.-J.; Fu, W.-F., Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. *J. Mater. Chem. A* **2015**, *3* (11), 6096-6101.

3. Yue, Q.; Wan, Y.; Sun, Z.; Wu, X.; Yuan, Y.; Du, P., MoP is a novel, noble-metal-free cocatalyst for enhanced photocatalytic hydrogen production from water under visible light. *J. Mater. Chem. A* **2015**, *3* (33), 16941-16947.

4. Cheng, H.; Lv, X. J.; Cao, S.; Zhao, Z. Y.; Chen, Y.; Fu, W. F., Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation. *Sci Rep* **2016**, *6*, 19846.

5. Sun, Z.; Zheng, H.; Li, J.; Du, P., Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts. *Energy Environ. Sci.* **2015**, *8* (9), 2668-2676.

6. Hong, J.; Wang, Y.; Wang, Y.; Zhang, W.; Xu, R., Noble-metal-free NiS/C3 N4 for efficient photocatalytic hydrogen evolution from water. *ChemSusChem* **2013**, *6* (12), 2263-8.

7. Yu, Z.; Meng, J.; Xiao, J.; Li, Y.; Li, Y., Cobalt sulfide quantum dots modified TiO2 nanoparticles for efficient photocatalytic hydrogen evolution. *International Journal of Hydrogen Energy* **2014**, *39* (28), 15387-15393.

8. Zhong, Y.; Zhao, G.; Ma, F.; Wu, Y.; Hao, X., Utilizing photocorrosion-recrystallization to prepare a highly stable and efficient CdS/WS2 nanocomposite photocatalyst for hydrogen evolution. *Applied Catalysis B: Environmental* **2016**, *199*, 466-472.

9. Shen, M.; Yan, Z.; Yang, L.; Du, P.; Zhang, J.; Xiang, B., MoS2 nanosheet/TiO2 nanowire hybrid nanostructures for enhanced visible-light photocatalytic activities. *Chem Commun (Camb)* **2014**, *50* (97), 15447-9.

10. McEnaney, J. M.; Chance Crompton, J.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E., Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. *Chemical Communications* **2014**, *50* (75), 11026.

11. Pu, Z.; Ya, X.; Amiinu, I. S.; Tu, Z.; Liu, X.; Li, W.; Mu, S., Ultrasmall tungsten phosphide nanoparticles embedded in nitrogen-doped carbon as a highly active and stable hydrogen-evolution electrocatalyst. *J. Mater. Chem. A* **2016**, *4* (40), 15327-15332.

12. Pu, Z.; Liu, Q.; Asiri, A. M.; Sun, X., Tungsten phosphide nanorod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values. *ACS applied materials & interfaces* **2014**, *6* (24), 21874-9.