Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO₂ layer

Feilong Cai^{a,b}, Liyan Yang^{a,b}, Yu Yan^{a,b}, Jinghui Zhang^{a,b}, Fei Qin^c, Dan Liu^{a,b}, Yi-Bing Cheng^{d,e}, Yinhua Zhou^c, Tao Wang^{a,b*}

^aState Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China

^bSchool of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China

^cWuhan National Laboratory for Optoelectronics, and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China

^dState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China

^eDepartment of Materials Science and Engineering, Monash University, Victoria 3800, Australia

* E-mail: twang@whut.edu.cn

Figure S1. (a) Photos of the TiO_2 solution without (left) and with (right) the addition of TIPD. (b) Scanning electron microscopy (SEM) image of a TiO_2 :TOPD film cast on ITO substrate. High magnification SEM images of TiO_2 films cast on ITO substrate with (c) and without (d) the addition of TOPD.

Figure S3. The XRD spectra of perovskite on ITO (green line), TiO_2 :TOPD (black line), TiO_2 :TOPD/PC₆₀BM (red line), TiO_2 :TOPD/C₆₀-ETA (blue line) surfaces.

Figure S4. The *J-V* curves of devices using TiO_2 :TOPD/PC₆₀BM as ETLs with (a) 0 nm, (b) 29 nm, (c) 33 nm, (d) 35 nm, (e) 37 nm, (f) 50 nm, respectively. PCEs close to the average values were selected and plotted in this figure.

Figure S5. The *J-V* curves of devices using (a) TiO_2 :TOPD/PC₆₀BM(2nm) and (b) TiO_2 :TOPD/C₆₀-ETA(2 nm) as ETLs, respectively. PCEs close to the average values were selected and plotted here.

Figure S6. The evolutions of PCE as a function of illumination time using (a) 50 nm $PC_{60}BM$ and (b) 30 nm $PC_{60}BM$ as the ETLs.

Figure S7. (a) The conductivity of TiO_2 : TOPD/PC₆₀BM films with various PC₆₀BM thickness. (b) The

conductivity of TiO_2 :TOPD/C₆₀-ETA films with various C₆₀-ETA thickness.

Figure S8. (a) The PL spectra of perovskite films on TiO_2 :TOPD/PC₆₀BM with different PC₆₀BM thickness. (b) The PL spectra of perovskite films on TiO_2 :TOPD/C₆₀-ETA with different C₆₀-ETA thickness.

^[1] Z. A. Tan, W. Zhang, Z. Zhang, D. Qian, Y. Huang, J. Hou, Y. Li, Adv. Mater. 2012, 24, 1476.

^[2] Y. Yan, F. Cai, L. Yang, J. Li, Y. Zhang, F. Qin, C. Xiong, Y. Zhou, D. G. Lidzey, T. Wang, Adv. Mater. 2017, 29, 1604044.