Electronic Supplementary Information for:

Porphyrin-graphene oxide frameworks for long life sodium ion batteries

Nanjundan Ashok Kumar,^a*Rohit Ranganathan Gaddam, ^a Moorthy Suresh, ^b Srinivasa Rao Varanasi, Dongfang Yang, Suresh K. Bhatia ^a and X.S. Zhao ^a*

^aSchool of Chemical Engineering, The University of Queensland, St. Lucia, Brisbane 4072, Australia Email: <u>ashok.nanjundan@uq.edu.au</u>; <u>george.zhao@uq.edu.au</u>

^bSchool of Chemistry, The University of Queensland, St. Lucia, Brisbane 4072, Australia

Experimental section

Synthesis of 5,10,15,20-tetrakis(3',4'-dimethoxyphenyl)porphyrin: 3.4-dimethoxy benzaldehyde (5g, 30 mmol) was dissolved in 200 ml of propionic acid and refluxed at 120°C, followed by addition of freshly distilled pyrrole (2.0 g, 30 mmol). After 2 hours, the reaction mixture was cooled to room temperature and propionic acid was evaporated. The obtained crude product was subjected to silica-gel column using methanol: chloroform (2:98 v/v) as an eluent crystalline 5,10,15,20-Tetrakis(3',4'to vield purple solid of dimethoxyphenyl)porphyrin (I) (14%) (Figure S1). The formation of I was confirmed from ¹H NMR and ESI-MS (Figure S2 and S3).

¹H NMR (500 MHz, CDCl₃, δ ppm): -2.75 (2H, s), 3.9 (12H, s), 4.18 (12H, s), 7.26-7.25 (4H), 7.78-7.75 (8H, m), 8.90 (8H, s).

ESI-MS calculated for $C_{52}H_{46}N_4O_8$: 854,94; found: 855.34.

Figure S1. Synthetic protocol for 5,10,15,20-Tetrakis(3',4'-dimethoxyphenyl) porphyrin.

Figure S2. ¹H-NMR spectra of 5,10,15,20-Tetrakis(3',4'-dimethoxyphenyl) porphyrin.

Figure S3. ESI-MS of 5,10,15,20-tetrakis(3',4'-dimethoxyphenyl)porphyrin.

Synthesis of 5,10,15,20-Tetrakis(3',4'-dihydroxyphenyl) porphyrin: 2.4 g of I (2.8 mmol) from the previous step was dissolved in dry CH_2Cl_2 (100 ml) under argon atmosphere, followed by dropwise addition of 22 mL of 1M BBr₂ in CH_2Cl_2 at -78°C. After 24 hours, 50 mL of water was added and extracted with ethyl acetate: methanol (97:3) solvent mixture. The organic layer was collected dried over anhydrous sodium sulphate. The solution was reduced to a small volume on a rotary evaporator. The residue was then chromatographed on a dry silica gel column using ethyl acetate-MeOH (9:1, v/v) as the eluent to give 5,10,15,20-tetra(3',4'-dihydroxyphenyl)porphyrin (II) (71%) (Figure S4). The compound formation was confirmed by ¹H NMR (Figure S5) and ESI-MS (Figure S6).

¹H NMR (500 MHz, CH₃OD, δ ppm): 7.51-7.49 (4H, d, J=10, phenyl), 7.99-7.98 (4H, d, J=5, phenyl), 8.16 (4H, s, phenyl), 8.82 (8H, s, pyrrole).

ESI-MS calculated for $C_{44}H_{30}N_4O_8$: 742.73; found 743.2.

Figure S4. Synthetic protocol for 5,10,15,20-tetrakis(3',4'-dihydroxyphenyl)porphyrin.

Figure S5. ¹H-NMR spectra of 5,10,15,20-tetrakis(3',4'-dihydroxyphenyl)porphyrin.

Figure S6. ESI-MS of 5,10,15,20-tetrakis(3',4'-dihydroxyphenyl)porphyrin.

Figure S7. FESEM images of *Por*-GOF displaying stacked sheets. Images were obtained from the same sample at different locations.

Figure S8. Cycling stability of Por-GOF tested after a 2.5 month resting.

Figure S9. Cycling stability of *Por*-GOF at a current density of 100 mA g⁻¹, GO at a current density of 100 mA g⁻¹ and 1 A g⁻¹ respectively.

 Table S1. Comparison of carbon-based anodes in sodium-ion batteries

Material	Synthesis method	Potential Range (V)	Electrolyte	Capacity (mA h g ⁻¹)	Cycling stability	Rate capability	Remarks	Studies performed after prolonged resting	Ref.
Por-GOF	Reducing and pillaring of GO using porphyrin molecule	0.005 - 3	NaClO4 in EC, PC and FEC	268 at 50 mA g ⁻¹	~200 mAhg ⁻¹ obtained after 500 cycles at 0.1 A g ⁻¹	204 mA h g ⁻¹ at 0.1 A g ⁻¹ 196 mA h g ⁻¹ at 0.2 A g ⁻¹	Highly stable cycling performance. ~100 % capacity retention even after 720 hours of resting period.	Yes	This work
Reduced graphene oxide	Heat treatment of GO under N_2 atmosphere	0.01 - 2	NaClO ₄ in PC	174.3 at 40 mA g ⁻¹	~141 mA h g ⁻¹ at 0.04 A g ⁻¹ after 1000 cycles was obtained.	150.9 mA h g ⁻¹ at 0.2 A g ⁻¹ 118.7 mA h g ⁻¹ at 0.4 A g ⁻¹	A slower capacity decay at higher current density was observed.	No	1
Crumpled graphene paper	Thermal annealing at 600°C in Ar atmosphere	0.001 - 2.5	NaClO ₄ in PC	183 at 100 mA g ⁻¹	~100 mA h g ⁻¹ capacity at 0.1 A g ⁻¹ was observed after 500 cycles	ca.100 mA h g ⁻¹ at 4 A g ⁻¹ 61 mA h g ⁻¹ at 8 A g ⁻¹	A specific capacity of less than 150 mA h g ⁻¹ was observed when cycled at 1 A g ⁻¹ .	No	2
Reduced graphene oxide	Thermal annealing under dynamic vacuum	0.1-2.5	NaPF ₆ in DMC and DC	248 at 100 mA g ⁻¹	~248 at 0.1 A g ⁻¹ was obtained in the 50 th cycle	220 mA h g ⁻¹ at 1 A g ⁻¹ 175 mA h g ⁻¹ at 5 A g ⁻¹	26% degradation in capacity was observed in the 5^{th} cycle.	No	3

Reduced graphene oxide	SnCl ₂ based GO reduction	0.005 - 3	NaClO ₄ in EC, PC and FEC	272 at 50 mA g ⁻¹	\sim 120 at 0.05 A g ⁻¹ was obtained in the 300 th cycle	146 mA h g ⁻¹ at 0.1 A g ⁻¹ 109 mA h g ⁻¹ at 0.2 A g ⁻¹	A slow capacity decay could be observed in the later cycles.	No	4
Expanded graphitic materials	Heat treatment of GO in nitrogen atmosphere.	0.003 - 2	NaPF ₆ in EC and DC	203 at 37.2 mA g ⁻¹	\sim 150 mA h g ⁻¹ retained after 50 cycles at 0.0372 A g ^{-1.}	~200 mA h g ⁻¹ at 0.0186 A g ⁻¹ ~100 mA h g ⁻¹ at 0.372 A g ⁻¹	Modest performance was observed at high current densities.	No	5
Single layered graphene	Chemical vapour deposition onto copper foil	0 - 2.8	NaPF ₆ in EC and DC	21 μA h cm ⁻² at 5 μA cm ⁻²	\sim 14.3 µA h cm ⁻² retained after 100 cycles at 5 µA cm ⁻² .	4.6 μA h cm ⁻² at 50 μA cm ⁻²	Evaluated as an unsuitable electrode for sodium storage	No	6
Graphene nanosheets	GO reduced by heating at 300°C in Argon atmosphere	0.4 - 2	NaClO ₄ in EC and DC	220 at 30mA g ⁻¹	Slightly less than 200 mA h g ⁻¹ after 300 cycles at 0.03 A g ^{-1.}	~105 mA h g ⁻¹ at 5 A g ⁻¹ ~73 mA h g ⁻¹ at 10 A g ⁻¹	Around 80% of the capacity can be retained after 300 cycles.	No	7
Graphene nanosheets	Microplasma assisted synthesis	0.01 – 2	NaClO ₄ in EC and DC	250 at 30 mA g ⁻¹	Slightly less than 150 mA h g ⁻¹ after 500 cycles at 0.1 A g ⁻¹	~150 mA h g ⁻¹ at 1 A g ⁻¹ ~110 mA h g ⁻¹ at 5 A g ⁻¹	Graphene sheets with higher oxygen functional groups can lead to higher capacity loss with only 75 % of capacity retention.	No	8
Porous graphene sheet	Ferric nitrate used to create pores on GO	0.01 – 3	NaClO ₄ in EC and DC	193 at 50 mA g ⁻¹	~195 mA h g ⁻¹ retained after 50 cycles at 0.05 A	~111 mA h g ⁻¹ at 1 A g ⁻¹	Stable cycling for more than 10000 cycles.	No	9
Reduced	Thermal annealing	0.01 -	NA	140 at 100	s ~100 mA h g ⁻¹	~200 mA h g ⁻¹ at	A slow capacity	No	10

graphene oxide	in Ar atmosphere	2.5		mA g ⁻¹	retained after 1000 cycles at 0.1 A g ^{-1.}	0.02 A g ⁻¹ ~150 mA h g ⁻¹ at 0.04 A g ⁻¹	decay could be observed in the later cycles.		
Expanded graphite	Heat treatment based reduction of GO	0 -2	NaClO ₄ in PC	280 at 20 mA g ⁻¹	Slightly less than 300 mA h g ⁻¹ after 30 cycles at 0.02 A g^{-1}	~184 mA h g ⁻¹ at 0.1 A g ⁻¹ ~91 mA h g ⁻¹ at 0.2 A g ⁻¹	Retains 73.92% of its capacity after 2,000 cycles.	No	11
Few layered graphene	Chemical vapour deposition	0.01 - 2	NaPF ₆ in diglyme	150 at 200 mA g ⁻¹	Slightly less than 120 mA h g ⁻¹ after 8000 cycles at 12 A g ⁻¹	~125 mA h g ⁻¹ at 10 A g ⁻¹ ~100 mA h g ⁻¹ at 30 A g ⁻¹	Ether-based electrolyte used as a non-stick coating to facilitate sodium storage.	No	12

(PC = propylene carbonate, FEC = fluoroethylene carbonate, DMC = dimethyl carbonate, EC = ethylene carbonate, DC = diethyl carbonate)

References:

- 1. Y.-X. Wang, S.-L. Chou, H.-K. Liu and S.-X. Dou, *Carbon*, 2013, **57**, 202-208.
- 2. Y. S. Yun, Y.-U. Park, S.-J. Chang, B. H. Kim, J. Choi, J. Wang, D. Zhang, P. V. Braun, H.-J. Jin and K. Kang, *Carbon*, 2016, **99**, 658-664.
- 3. J. C. Pramudita, D. Pontiroli, G. Magnani, M. Gaboardi, M. Riccò, C. Milanese, H. E. A. Brand and N. Sharma, *ChemElectroChem*, 2015, **2**, 600-610.
- 4. N. A. Kumar, R. R. Gaddam, S. R. Varanasi, D. Yang, S. K. Bhatia and X. S. Zhao, *Electrochim. Acta*, 2016, 214, 319-325.
- 5. A. Ramos, I. Cameán, N. Cuesta, C. Antuña and A. B. García, *Electrochim. Acta*, 2016, **187**, 496-507.
- 6. A. Ramos, I. Cameán, N. Cuesta and A. B. García, *Electrochim. Acta*, 2015, **178**, 392-397.
- 7. X.-F. Luo, C.-H. Yang, Y.-Y. Peng, N.-W. Pu, M.-D. Ger, C.-T. Hsieh and J.-K. Chang, J. Mater. Chem. A, 2015, 3, 10320-10326.
- 8. X.-F. Luo, S.-Y. Wang, C.-M. Tseng, S.-W. Lee, W.-H. Chiang and J.-K. Chang, Journal of Materials Chemistry A, 2016, 4, 7624-7631.
- 9. X. Zhang, J. Zhou, C. Liu, X. Chen and H. Song, *Journal of Materials Chemistry A*, 2016, 4, 8837-8843.
- 10. L. David and G. Singh, *The Journal of Physical Chemistry C*, 2014, **118**, 28401-28408.
- 11. Y. Wen, K. He, Y. Zhu, F. Han, Y. Xu, I. Matsuda, Y. Ishii, J. Cumings and C. Wang, *Nature Communications*, 2014, 5, 4033.
- 12. A. P. Cohn, K. Share, R. Carter, L. Oakes and C. L. Pint, *Nano Lett.*, 2016, 16, 543-548.