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Experimental section

Synthesis  of  5,10,15,20-tetrakis(3’,4’-dimethoxyphenyl)porphyrin:  3,4-dimethoxy
benzaldehyde (5g, 30 mmol) was dissolved in 200 ml of propionic acid and refluxed at 120°C,
followed by addition of freshly distilled pyrrole (2.0 g, 30 mmol). After 2 hours, the reaction
mixture was cooled to room temperature and propionic acid was evaporated. The obtained
crude product was subjected to silica-gel column using methanol: chloroform (2:98 v/v) as an
eluent to  yield purple  crystalline solid of  5,10,15,20-Tetrakis(3’,4’-
dimethoxyphenyl)porphyrin (T) (14%) (Figure S1). The formation of I was confirmed from 'H
NMR and ESI-MS (Figure S2 and S3).

"H NMR (500 MHz, CDCl;, 6 ppm): -2.75 (2H, s), 3.9 (12H, s), 4.18 (12H, s), 7.26-7.25 (4H),
7.78-7.75 (8H, m), 8.90 (8H, s).

ESI-MS calculated for C5,H4sN4Og: 854,94; found: 855.34.
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Figure S1. Synthetic protocol for 5,10,15,20-Tetrakis(3’,4’-dimethoxyphenyl) porphyrin.
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Figure S2. 'H-NMR spectra of 5,10,15,20-Tetrakis(3’,4’-dimethoxyphenyl) porphyrin.
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Figure S3. ESI-MS of 5,10,15,20-tetrakis(3’,4’-dimethoxyphenyl)porphyrin.




Synthesis of 5,10,15,20-Tetrakis(3’,4’-dihydroxyphenyl) porphyrin: 2.4 g of 1 (2.8 mmol)
from the previous step was dissolved in dry CH,Cl, (100 ml) under argon atmosphere, followed
by dropwise addition of 22 mL of 1M BBr;, in CH,Cl, at -78°C. After 24 hours, 50 mL of water
was added and extracted with ethyl acetate: methanol (97:3) solvent mixture. The organic layer
was collected dried over anhydrous sodium sulphate. The solution was reduced to a small
volume on a rotary evaporator. The residue was then chromatographed on a dry silica gel
column using ethyl acetate-MeOH (9:1, v/v) as the eluent to give 5,10,15,20-tetra(3’,4’-
dihydroxyphenyl)porphyrin (II) (71%) (Figure S4). The compound formation was confirmed
by 'H NMR (Figure S5) and ESI-MS (Figure S6).

'"H NMR (500 MHz, CH30D, 6 ppm): 7.51-7.49 (4H, d, J=10, phenyl), 7.99-7.98 (4H, d, J=5,
phenyl), 8.16 (4H, s, phenyl), 8.82 (8H, s, pyrrole).

ESI-MS calculated for C44H3oN4Og: 742.73; found 743.2.
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Figure S4. Synthetic protocol for 5,10,15,20-tetrakis(3’,4’-dihydroxyphenyl)porphyrin.
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Figure S5. 'H-NMR spectra of 5,10,15,20-tetrakis(3’,4’-dihydroxyphenyl)porphyrin.
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Figure S6. ESI-MS of 5,10,15,20-tetrakis(3’,4’-dihydroxyphenyl)porphyrin.



Figure S7. FESEM images of Por-GOF displaying stacked sheets. Images were obtained

from the same sample at different locations.
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Figure S8. Cycling stability of Por-GOF tested after a 2.5 month resting.
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Figure S9. Cycling stability of Por-GOF at a current density of 100 mA g'!, GO at a current

density of 100 mA g-' and 1 A g! respectively.



Table S1. Comparison of carbon-based anodes in sodium-ion batteries

Studies
Potential Capacity Cycling stability = Rate capability Remarks performed
Material Synthesis method  Range Electrolyte (mA h g) after Ref.
) prolonged
resting
Por-GOF Reducing and 0.005-3 NaClO, in 268 at 50  ~200 mAhg! 204mA hg'lat  Highly stable Yes This
pillaring of GO EC, PC and mA g! obtained after 0.1Ag! cycling work
using porphyrin FEC 500 cycles at 0.1 196 mAhg'at  performance.
molecule Ag! 02Ag! ~100 % capacity
retention even
after 720 hours of
resting period.
Reduced Heat treatment of 0.01-2 NaClO4inPC 1743at40 ~14lmAhg'at 1509mAhg'at A slower No !
graphene GO under N, mA g'! 0.04 A g'! after 02A¢g! capacity decay at
oxide atmosphere 1000 cycles was 118.7mA hg'at higher current
obtained. 0.4Ag! density was
observed.
Crumpled Thermal annealing ~ 0.001 -  NaClO;inPC 183 at 100 ~100mA h g'! ca.100 mA h gl at A specific No 2
graphene at 600°C in Ar 2.5 mA g'! capacity at 0.1 A 4Ag! capacity of less
paper atmosphere glwasobserved 6lmAhglat8A than150mAhg
after 500 cycles g’! ! was observed
when cycled at 1
Agl
Reduced Thermal annealing ~ 0.1-2.5 NaPFg in 248 at 100 ~248at0.1 Ag' 220mAhg'latl 26% degradation No 3
graphene under dynamic DMC and DC mA g! was obtained in A gl in capacity was
oxide vacuum the 50t cycle 175mAhg'at5 observed in the

Ag!

5t cycle.
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oxide
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materials

Single
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graphene

Graphene
nanosheets

Graphene
nanosheets

Porous
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sheet

Reduced

SnCl, based GO
reduction

Heat treatment of
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Chemical vapour
deposition onto
copper foil

GO reduced by
heating at 300°C
in Argon
atmosphere

Microplasma
assisted synthesis

Ferric nitrate used

to create pores on
GO

Thermal annealing

0.005-3

0.003 -2

04-2

0.01-2

0.01-3

0.01 -

NaClOy in
EC, PC and
FEC

NaPF¢ in EC
and DC

NaPF¢ in EC
and DC

NaClO4 in EC
and DC

NaClO4 in EC
and DC

NaClO4 in EC
and DC

NA

272 at 50
mA g!

203 at 37.2
mA g!

21 pAh
cm?at5
HA cm?

220 at
30mA g!

250 at 30
mA g!

193 at 50
mA g'!

140 at 100

~120at0.05A g
I was obtained in
the 300t cycle

~150 mA h g'!
retained after 50
cycles at 0.0372
Agl

~14.3 pA h cm?
retained after 100
cycles at 5 pA
cm?2,

Slightly less than
200 mA h g!
after 300 cycles
at0.03 A gl

Slightly less than
150 mA h g'!
after 500 cycles
at0.1 Ag!

~195mA hg'!
retained after 50
cycles at 0.05 A
gl

~100 mA h g'!

146 mA h g! at
0.1Ag!

109 mA hg'at
02Ag!
~200mA h g'! at
0.0186 A g!
~100 mA h g'!at
0372 A g
4.6 uA h cm at
50 pA cm?
~105mAhg'at5
Ag!
~73mAhgt'at10
Ag!
~150mAhg'latl
A gl
~110mAhg'at5
Ag!
~I11mAhg'atl
Ag!
~200mA h g'! at

A slow capacity No
decay could be

observed in the

later cycles.

Modest No
performance was
observed at high
current densities.

Evaluated as an No
unsuitable

electrode for

sodium storage..

Around 80% of No
the capacity can

be retained after

300 cycles.

Graphene sheets No
with higher

oxygen

functional groups

can lead to higher

capacity loss

with only 75 %

of capacity

retention.

Stable cycling for No
more than 10000
cycles.

A slow capacity No



graphene in Ar atmosphere 2.5 mA g! retained after 0.02 A g! decay could be
oxide 1000 cycles at ~150 mA hg'lat observed in the
0.1Agh 0.04 Ag! later cycles.
Expanded Heat treatment 0-2 NaClO4in PC 280 at20  Slightly lessthan  ~184 mA hg'at Retains 73.92% No 1
graphite based reduction of mA g'! 300 mA h g’! 0.1 Ag! of its capacity
GO after 30 cycles at ~9lmAhg'lat  after 2,000
0.02Ag! 02A¢g! cycles.
Few layered  Chemical vapour 0.01-2 NaPFg in 150 at 200  Slightly less than ~ ~125mA hg'at Ether-based No 12
graphene deposition diglyme mA g! 120mA h g'! 10A g! electrolyte used
after 8000 cycles  ~100 mA hg'at asanon-stick
at 12 A g'! 30A gt coating to
facilitate sodium
storage.

(PC = propylene carbonate, FEC = fluoroethylene carbonate, DMC = dimethyl carbonate, EC = ethylene carbonate, DC = diethyl carbonate)
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