Supporting information

A Facile Way to Synthesize Pomegranate-Like Porous Carbon Microspheres as an Improved Anode Material for Li-ion Batteries

Lei Zhang,^a Yuhai Dou,^a Haipeng Guo,^a Binwei Zhang,^a Xiaoxiao liu,^b Min Wan,^b Weijie Li,^a

Xianluo Hu,^b Shixue Dou,^a Yunhui Huang,^b Huakun Liu^{a*}

^a Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia, ^b State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

*To whom correspondence should be addressed. E-mail address: <u>hua@uow.edu.au</u> (H. Liu), Tel.: +61-2-4221-4547, Fax: +61-2-4221-5731.

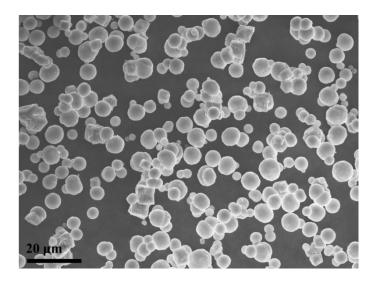


Figure S1. SEM image of C@CaCO₃.

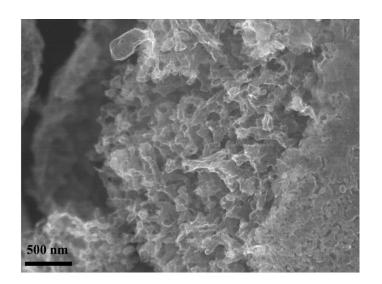


Figure S2. SEM image of the inside part of PCMs.

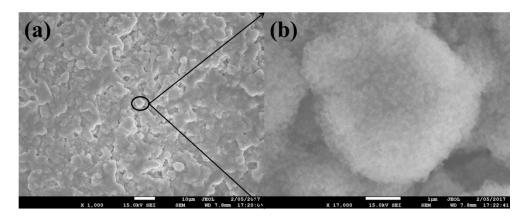
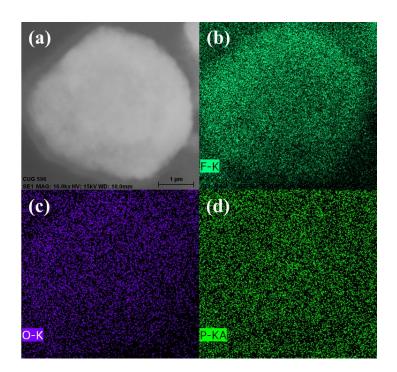



Figure S3. The SEM images of PCMs in different magnifications after cycling test.

Figure S4. SEM image of PCMs after first cycling test (a), and elemental mapping for elements F (b), O (c) and P (d).

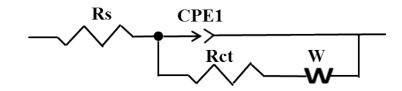


Figure S5. Equivalent circuit obtained from the EIS curve of PCMs.

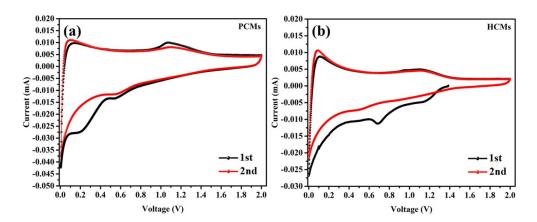


Figure S6 The cyclic voltammetry curves of PCMs (a) and HCMs (b).

Table S1. Charge resistance and solution resistance of PCMs and HCMs obtained from Nyquist Plots.

Samples	PCMs	HCMs
Rct (Ω)	230	410
Rs (Ω)	4.5	5.7