## **Supporting Information for**

## An interpenetrating network poly(diethylene glycol carbonate) based polymer electrolyte towards solid state lithium batteries

Xiaochen Liu,<sup>ab</sup> Guoliang Ding,<sup>b</sup> Xinhong Zhou, <sup>\*</sup> <sup>a</sup> Shizhen Li,<sup>ab</sup> Weisheng He,<sup>ab</sup> Jingchao Chai,<sup>b</sup> Chunguang Pang,<sup>b</sup> Zhihong Liu <sup>\*</sup> <sup>b</sup> and Guanglei Cui <sup>\*</sup> <sup>b</sup>

a. College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China. \*E-mail: <u>zxhhx2008@163.com</u>.

b. Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China. \*E-mail: <u>liuzh@qibebt.ac.cn</u>, <u>cuigl@qibebt.ac.cn</u>; Tel: +86-532-80662746.



Fig. S1. <sup>1</sup>H NMR spectra of PDEC in CDCl<sub>3</sub>.



Fig. S2. <sup>1</sup>H NMR spectra of PDEC-DMA in CDCl<sub>3</sub>.



Fig. S3. FTIR spectra of (a) PDEC, (b) PDEC-DMA; ATR-FTIR spectra of (c) IPN-PDEC, (d) IPN-PDEC-LiTFSI<sub>20</sub>.

| Wavenumber / cm <sup>-1</sup> | Analysis                                                    |  |  |  |  |
|-------------------------------|-------------------------------------------------------------|--|--|--|--|
| 3535                          | stretching vibration of hydroxyl                            |  |  |  |  |
| 2872-2872                     | stretching vibration of C-H                                 |  |  |  |  |
| 1756                          | stretching vibration of C=O from carbonate and methacrylate |  |  |  |  |
| 1634                          | stretching vibration of C=C from methacrylate               |  |  |  |  |
| 1396-1456                     | bending vibration of CH <sub>2</sub>                        |  |  |  |  |
| 1259                          | stretching vibration of C-O from carbonate and methacrylate |  |  |  |  |
| 1128                          | stretching vibration of C-O-C from ether                    |  |  |  |  |
| 786                           | bending vibration of O=C-O from carbonate                   |  |  |  |  |



Fig. S4. ESI-MS distribution of PDEC.

| Tyŗ | be I: |     | но  |     |     |      |      |      |  |
|-----|-------|-----|-----|-----|-----|------|------|------|--|
| n   | 2     | 3   | 4   | 5   | 6   | 7    | 8    | 9    |  |
| m/z | 393   | 525 | 657 | 789 | 921 | 1053 | 1185 | 1317 |  |
| Тур | be П: |     |     |     |     |      |      |      |  |
| n   | 2     | 3   | 4   | 5   | 6   | 7    | 8    | 9    |  |
| m/z | 333   | 465 | 597 | 729 | 861 | 993  | 1125 | 1257 |  |

Tab. S2. ESI-MS data analysis of PDEC.



Fig. S5. ESI-MS distribution of PDEC-DMA.

| Type ]                                                  |     | (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 |     |     |    |     |     |     |      |  |
|---------------------------------------------------------|-----|-------------------------------------------|-----|-----|----|-----|-----|-----|------|--|
| n                                                       |     | 2                                         | 2   | 2   |    |     | 5   |     | 6    |  |
| m/z                                                     |     | 401                                       | 53  | 33  | 66 | 5   | 797 |     | 929  |  |
| Type $\Pi$ :                                            |     |                                           |     |     |    |     | ОН  |     |      |  |
| n                                                       | 2   |                                           | 3   | 3 4 |    | 5   | 6   |     | 7    |  |
| m/z                                                     | 46  | 51                                        | 593 | 72  | 25 | 857 | 989 |     | 1121 |  |
| Type III: $O ( O ( O ) ) O ( O ) ) O ( O ) O ( O ) O )$ |     |                                           |     |     |    |     |     |     |      |  |
| n                                                       | n 2 |                                           |     | 3   |    | 4   |     | 5   |      |  |
| m/z                                                     |     | 528                                       |     | 661 |    | 793 |     | 925 |      |  |

Tab. S3. ESI-MS data analysis of PDEC-DMA.



Fig. S6. Young' modulus mapping of the IPN-PDEC.



Fig. S7. The SEM image of pristine cellulose.



Fig. S8. (a) The charge/discharge profiles and (b) C-rate capability of LiFePO<sub>4</sub>/IPN-PDEC-LiTFSI<sub>20</sub>/Li cells with varied C-rates at 25 °C; (c) cycling performance of LiFePO<sub>4</sub>/IPN-PDEC-LiTFSI<sub>20</sub>/Li cells at a charge/discharge current intensity of 0.2 C and cut-off voltage of 2.75V to 4.0 V at 25 °C.



Fig. S9. The cycling performance of Li/cellulose+(1 M LiTFSI+EC/DMC)/LiFePO4 at a charge/discharge current intensity of 0.2 C and cut-off voltage of 2.75V to 4.0 V at 25 °C.



Fig. S10. Temperature of dependence of ionic conductivity of SPE-PDEC-LiTFSI<sub>20</sub>.



Fig. S11. Temperature dependence of ionic conductivity of IPN-PDEC-LiDFOB<sub>15</sub>.